Next generation of the submillimetre wave security camera

GEFÖRDERT VOM

THz Videocam

- Security body scanning: concept and actuality
- Realization of our camera(s)
 - Overview
 - Details of selected components
- Conclusion

basic concept of a "body scanner"

image of a person in a suitable wavelength band conditions:

- 1. (partial) transparent clothing
- 2. contrast between hidden object (z.B. weapons, explosives etc.) and human body
- 3. best possible spatial resolution
- 4. avoid health and privacy issues

Actuality

Prospects and limits of established solutions

- high image quality
- mature technology
- in operation at airport
- no health issues

limited to near field (portal) because of insufficient spatial resolution and difficult illumination

Why cameras?

'camera' is synonymous with 'flexible':

- → quasi-mobile operation (configurable) perspective: thinking beyond
- detection prior endangering
- temporary installation

Active or passive?

reflectivity of human skin

[11] Alekseev et al., Human Skin Permittivity Determined by Millimeter Wave Reflection Measurements, Bioelectromagnetics 28 (2007)

[12] Appleby et al., Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region, IEEE Transactions on antennas and propagation, 55 (2007)

thermal radiation of 35°C black body

Indeed, a passive camera is a more simple approach

...in retrospect:

1st generation (2007):

- 1 sensor
- 25 seconds / frame
- liquid helium

2nd generation (2009):

- 7 sensors
- 1 seconds / frame
- liquid helium

3rd generation (2010):

- 20 sensors
- 10 frames / second
- cryogen-free

THz-Videocam TWO

integrated system concept with automated cryocooler TransMIT model PT4200 (aircooled, 220V 4kW)

scanning apparatus for 25Hz utilising carbon fibre reinforced mirror

linear array of 64 superconducting detectors

modular THz-optics

Modular optics

field of view

on-axis telescope as telephoto off-axis telescope as wide-angle

- field of view 1 m × 2 m
- intended image resolution 128×256 pixel (1.5cm Nyquist sampling)
- image plane corrected for 25cm long receiver (tilted and curved)

Scanning scheme

frame-time: 40 ms

dead-time: 2 ms

image: 38ms

Scanning scheme

effect of time domain multiplexing (serial readout) on the scanning

Achievable performance

- compromise between spatial resolution and transmission
- horn-coupled detector with bandwidth 0.8 – 0.91 mm
- coupling efficiency including filters about 40%

- solving Planck's equation (200 pW @ 295K)
- background-limited NEP 1·10⁻¹⁵ W/√Hz
- human body (310K) stands out with about 18pW (∆T=15K)
- bandwidth is limited by scanning approach to about 8.5kHz at 25Hz frame rate
- achievable thermal resolution (theoretical)
 ΔT=0,16K (≤7bit)

Detector technology: TES

- superconducting bolometer based on 1µm thick siliconnitrid-membrane
- working temperature ~0,5 K
- absorption in impedance matched dipole-antenna array (λ/2)
 - bandpass-definition through a set of cryogenic filters

Linear array

- 8 sensor modules with 8 pixel each
- cryogenic setup with vibration isolation
- optimised magnetic shielding (superconducting + cryoperm)
- first milestone (6/2013): 64 pixel
- final stage of completion: 128 pixel

THz footage

(Click to view video in a separate window, return manually to slide No. 15)

- "first light" 20.6.2013
- 25Hz, object distance 20m
- hidden money bag and plastic bottle (soft drink)

Summary of progress

parameter	,THz-Videocam'	,THz-Videocam TWO'
working frequency (wavelength)	0,34THz (870µm)	
frame rate	10 Hz	25 Hz
spatial resolution (diffraction limit)	1,7cm	1cm
object plane	Ø1,2m (1,1m ²)	2m x 1m (2m ²)
distance	(8,5±1,5)m	(4-20) m
field of view (FOV _{max})	0,14 rad	max. 0,58rad x 0,32rad
receiver	20 pixel circular array	64 pixel linear array
scan	spiral (5 traces), effective about 100×100	linear, 256×64
power supply	water-cooled compressor 380V/6kW	air-cooled compressor with 220V, power supply 4kW

GEFÖRDERT VOM

Acknowledgement

- to colleagues from IZEW for accompanying research
- to Federal Ministry of Education and Research for financial support
- to action forces and security officials for instruction and valued advice

and last but not least.

to the audience for listening...