Key microstructural features of Bi2212 and Bi2223 wires

Applied Superconductivity Center,
National High Magnetic Field Laboratory, Florida State University
Tallahassee FL 32310
Sibling materials, but different architectures are needed for high J_c

- **Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_x$* (Bi2223) conductors
 - Flat tape

- **Bi$_2$Sr$_2$Ca$_1$Cu$_2$O$_x$* (Bi2212) conductors
 - Round wire

- **Bi2223**: Uni-axial texture

- **Bi2212**: No macroscopic texture
Generally high angle GBs should be avoided

Typically the J_c of highly textured HTS is better than that of untextured

- Planar bi-crystal studies have shown strong J_c decay at HTS GBs

J. Mannhart and H. Hilgenkamp, APL 73, 265 (1998)
Elimination of Bubbles is the key for high J_c Bi2212 RWs

- High angle GBs were not the primary current limiting mechanism in Bi2212 RWs

Fully dense Bi2212 RWs now show higher \(J_c \) than highly textured Bi2223 tapes

- Why do the macroscopically untextured RWs show higher \(J_c \)?
- Are HAGBs more transparent in Bi2212?
- Or any mechanisms that compensate the RW architecture?
Comparison of I_c in fields between Bi2223 flat and Bi2212 round wires

- I_c hysteresis in fields is caused by granularity of superconductors
 - Transport current passes through weak links in Bi2223
 - Weak links may be absent in Bi2212

By J. Jiang and D. Abraimov
Electron Backscatter Diffraction (EBSD) was used to visualize and analyze the microstructure of BSCCO.

The sample surface must be very clean – otherwise the diffraction signals will be blocked.

© Copyright 2012 EDAX Inc.
Uniaxial [001] texture is clearly seen in a Bi2223 tape conductor

- Transport current mostly passes across HAGBs with >20° misorientation
Grain/GB structure in a Bi2212 filament

10 µm

*Animation made by P. J. Lee
Typical grain structure in a Bi2212 RW

- Grain dimensions (ab vs c-axis) are more anisotropic
- Larger area of GBs//ab-plane due to the more anisotropic grain shape
- There are regions close to [001] (red), forming the colony structure
Typical GB structure in Bi2212

- Most of GBs appeared here have <20° misorientation
- There are more current paths that consists of just <20° GBs.

Magenta: <20°
Dark Blue: >20°
GB fraction as a function of misorientation angle

- In the Bi2223 flat filament, the GB misorientation angles are broadly distributed from <5° to 45°
- The distribution of Bi2212 misorientation angles shows a sharp peak around 10-15°
Anisotropic BSCCO crystal defines in-plane and out-of-plane misorientation

- **In-plane rotation**: rotation axis // c-axis
- **Out-of-plane**: rotation axis // ab-plane
Bi2212 grain orientations in the filament

- The orientations parallel to the ND are plotted in IPF.
- Dotted lines represent 15° in- and out-of-plane misorientation from [100].
Bi2212 grain orientations in the filament

- The orientations parallel to the RD are plotted in IPF.
- Dotted lines represent 15° in- and out-of-plane misorientation from [100].

Along the filament direction, both in- and out-of-plane misorientation is \(~15°\) or less.
The Bi2212 filament has greater out-of-plane misorientation along the radial direction.
The Bi2212 has fewer in-plane misorientation

- The in-plane misorientation in Bi2212 is almost \(\sim \pm 15^\circ \) or less
- Meanwhile, almost random in-plane orientation in Bi2223
Conclusion

- Two BSCCO sibling materials require two different architectures for high J_c wires
 - Bi2223 needs high uniaxial texture
 - Bi2212 does not need macroscopic texture
- The Bi2212 RWs show no $J_c(H)$ hysteresis
 - Strong indication that the Bi2212 grains are strongly coupled
 - There must be HAGBs, but they don’t dominate transport J_c
- Bi2212 has the unique grain structure
 - There is a huge amount of local texture, although prior deformation (wire drawing) can play no role in the grain growth
 - The out-of-plane misorientation along the filament direction is $\sim 15^\circ$
 - Surprisingly in-plane misorientation is $\sim 15^\circ$ too