The temperature dependence of superconducting single photon detectors is a vortex effect Jelmer J. Renema renema@physics.leidenuniv.nl

Jelmer J. Renema¹, Rosalinda Gaudio², Giulia Frucci², Döndü Sahin², Zili Zhou², Alesandro Gaggero³, Francesco Mattioli³, Roberto Leoni³, Michiel J.A. de Dood¹, Andrea Fiore², Martin P. van Exter¹ ¹⁾ Leiden University, Leiden, the Netherlands ²⁾ Cobra Research Institute, Eindhoven, the Netherlands ³⁾ IFN, Rome, Italy

Goal: investigate SSPD fundamentals

Four models

Three inter-related techniques:

Multiphoton excitations

- Observed in 2001
 [1], but considered
 a curiosity
- Important experimental tool:
 - Enhanced dynamic range
 - Probe with multiple energies in a single experiment

Appl. Phys. Lett., Vol. 79, No. 6, 6 August 2001

How to study multiphoton excitations?

- Exist in meander, but surpressed due to geometry
- Furthermore: meander has:
 - Bends
 - 'Constrictions'
- Fundamental study, so efficiency not an issue

Our sample: nanodetector

- One active point, 150, 220 nm wide NbN on GaAs (5 nm)
- Simple geometry
- Few fabrication errors
- Several multiphoton processes at once

NbN

GaAs

How do you make multiphoton excitations?

How do you make multiphoton excitations?

Quantum detector tomography

QDT is the bookkeeping of photon number probabilities, click probabilities and detection probabilities

Quantum detector tomography

Quantum detector tomography

Detector Tomography

- Measure counts vs input intensity
- Response to i photons given by p_i
- Treat linear efficiency seperately, but as free parameter

$$R(N) = e^{-\eta N} \sum_{i} p_{i} \frac{(\eta N)^{i}}{i!}$$

Renema et al, Optics Express 2012

Detector Tomography

- Measure counts vs input intensity
- Response to i photons given by p_i
- Treat linear efficiency seperately, but as free parameter

$$R(N) = e^{-\eta N} \sum_{i} p_{i} \frac{(\eta N)^{i}}{i!}$$

Renema et al, Optics Express 2012

Complete tomography

 1, 2 photon processes present

Complete tomography

Complete tomography

Now repeat this many times

- For each current, vary the input power
- From the power dependence, reconstruct which photon processes are present

Result from tomography

Result from tomography

- We find: linear efficiency is <u>independent</u> of bias current
- This is a result, not an assumption (agnostic)
- Number consistent with overlap x absorption

Renema et al, Optics Express 20, 2806-2813 (2012)

Result from tomography

- P_i internal response of the detector
- Independent of absorption, independent of incoupling
- There is more than linear efficiency

Renema *et al*, Optics Express **20**, 2806-2813 (2012)

Multiple wavelengths

Interchange energy/current

QP conversion is linear

- No dependence on initial number of photons, only energy
- Detector is an <u>energy detector</u>

Renema *et al*, Phys Rev B **87**, 174526 (2013)

1 phot @ λ_2 E/4 4 phot @ λ_1 $\Delta \ll E$

Universal curve

Universal curve

- $R(I,\lambda,N) =$ $R(I+\gamma E)$ with $E = N^{hc/\lambda}$
- Goes beyond measuring edge of the plateau region

Renema *et al*, Phys Rev B **87**, 174526 (2013) 27

Universal curve

- Fluctuationassisted scales in the same way as plateau response
- Results compatible with theory (both Engel & Vodolazov)

Renema *et al*, Phys Rev B **87**, 174526 (2013) 28

Result on 220 nm detector

Extreme dynamic range

- Find $I_b = I_0 \gamma E$
- 10.8 eV (X-UV):
 λeff = 115 nm
- Photon regimes
 overlap -> no
 stitching errors

 \bigcirc

First conclusion

Temperature dependence of I₀

Temperature dependence of I₀

•
$$I_b = I_0 - \gamma E$$

- Only I₀ temperature dependent
- Find cases $I_0 > I_c$ and $I_0 < I_c$
- Ratio I₀ / I_c follows vortex entry energy prediction

Renema et al, Phys Rev Letters **112**, 117604 (2014)

Second conclusion

Renema et al, Phys Rev Letters 112, 117604 (2014)

Conclusions

- There is more in the detector than linear effiency
- Quantum tomography useful for inner workings of detector
 - Linear energy-current relation up to X-UV
 - Temperature dependence fixed by vortex behaviour

Acknowledgements

Supervisor: <u>M.P. van Exter</u> Co-workers: <u>Q. Wang</u>, <u>M.J.A. de Dood</u>

Sample Fabrication TUE / IFN: <u>R.</u> <u>Gaudio, A. Fiore</u>, G. Frucci , Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni Mathematics: R. Gill

Numerical simulations: <u>A. Engel</u>

renema@physics.leidenuniv.nl

Renema *et al*, Optics Express **20**, 2806-2813 (2012) JJ Renema et al, Phys Rev A **86**, 062113 (2012) Renema *et al*, Phys Rev B **87**, 174526 (2013) Renema *et al*, Phys Rev Letters **112**, 117604 (2014)

