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• High-­‐order	
  polynomial	
  
approximaJons:	
  curved	
  
mesh	
  generaJon;	
  provable	
  
validity	
  

• Isogeometric	
  analysis:	
  
directly	
  based	
  on	
  CAD	
  (e.g.	
  
T-­‐splines) ⇠
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Figure 1: Reference unit triangle in local coordinates ⇠ = (⇠, ⌘) and the mappings x(⇠),
X(⇠) and X(x).

positive. In all what follows we will always assume that the straight-sided
mesh is composed of well-shaped elements, so that the positivity of detx

,⇠

is guaranteed. This standard setting is presented on Figure 1 (left) for the
quadratic triangle.

Let us now consider a curved element obtained after application of the
curvilinear meshing procedure, i.e., after moving some or all of the nodes of
the straight-sided element. The nodes of the deformed element are called
X

i

, i = 1 . . . N

p

, and we have

X(⇠) =

NpX

i=1

L(p)

i

(⇠) X
i

. (2)

Again, the deformed element is assumed to be valid if and only if the Ja-
cobian determinant J(⇠) := detX

,⇠ is strictly positive everywhere over the
⇠ reference domain. The Jacobian determinant J , however, is not constant
over the reference domain, and computing J

min

:= min⇠ J(⇠) is necessary to
ensure positivity.

The approach that is commonly used is to sample the Jacobian deter-
minant on a very large number of points. Such a technique is however both
expensive and not fully robust since we only get a necessary condition. In
this paper we follow a di↵erent approach: because the Jacobian determinant
J is a polynomial in ⇠, J can be interpolated exactly as a linear combination
of specific polynomial basis functions over the element. We would then like

3
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Fig. 6. Curvilinear mesh of a rotor using fourth-order curved triangles.
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Figure 10: Electromagnetic scattering by a Falcon jet.

25

• Split	
  computaJonal	
  domain	
  into	
  
subdomains,	
  and	
  iterate	
  

• Scalability	
  requires	
  “coarse	
  grid”	
  
(long-­‐distance	
  informaJon	
  
exchange);	
  open	
  problem	
  for	
  
high-­‐frequency	
  wave	
  
propagaJon

Figure 10: Electromagnetic scattering by a Falcon jet.
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IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015.
Invited keynote presentation 3A-LS-O1.3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.

6

Not submitted to IEEE Trans. Appl. Supercond.



• High-­‐order	
  and	
  isogeometric	
  methods	
  

• Domain	
  decomposiJon	
  techniques	
  

• MulJscale	
  methods	
  

• StochasJc	
  solvers	
  

• Homology	
  &	
  cohomology	
  solvers

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015.
Invited keynote presentation 3A-LS-O1.3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.

7

Not submitted to IEEE Trans. Appl. Supercond.



• Modern	
  computer	
  
architectures	
  enable	
  fully	
  
computaJonal	
  homogenizaJon	
  

• Possibly	
  heterogeneous	
  
models	
  

• Convergence	
  of	
  local	
  (in	
  the	
  
microstructure)	
  and	
  global	
  
quanJJes

56 CHAPTER 4. COMPUTATIONAL MULTISCALE METHODS

upscaling

downscaling

Figure 4.2: Scale transitions between macroscale (left) and mesoscale (right) prob-
lems. Downscaling (macro to meso): obtaining proper boundary conditions and the
source terms for the mesoscale problem from the macroscale solution. Upscaling
(meso to macro): e↵ective quantities for the macroscale problem calculated from
the mesoscale solution [148].

4.3.3 Scale transitions

The macroscale and the mesoscale problems in sections 4.3.1 and 4.3.2 are not yet
well-defined: the macroscale magnetic law HM(bM) is not defined at the macroscale
level and the mesoscale problem needs source terms bM , eM and jM and proper
boundary conditions to be well-posed. These two problems need to exchange in-
formation through scale transitions to fill in the missing information at both levels.
This information is exchanged through the downscaling and the upscaling stages
(see Figure 4.2).

During the downscaling, the macroscale fields are imposed as source terms for
the mesoscale problem. Boundary conditions for the mesoscale problem are also
determined so as to respect the two-scale convergence of the physical fields: the
convergence of the magnetic flux density b leads to the following condition on the
tangential component of the correction term of the magnetic vector potential ac:

1

|⌦m|
Z

⌦m

bm(x,y, t) dy = bM(x, t) =)
Z

⌦m

curlac(x,y, t) dy =

I

�m

n⇥ ac(x,y, t) dy = 0. (4.39)

This condition is fulfilled if ac belongs to the space H(curl;Y), i.e. if ac is periodic
on the cell. This implies that grady vc = e

1

�@tac also belongs to H(curl;Y). This
is automatically ensured by the curl theorem:

Z

�m

n⇥ grady vcdy =

Z

⌦m

curly grady vcdy. (4.40)

We also choose vc to be periodic.

84 CHAPTER 5. NUMERICAL TESTS

Figure 5.7: SMC problem, b-conform formulations, nonlinear case. Spatial cuts
of the z-component of the eddy currents j (top) and of the x-component of the
magnetic induction b (bottom) along the line {x = 475, z = 0}µm. (f = 50 kHz
and t = 6⇥ 10 7s).

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015.
Invited keynote presentation 3A-LS-O1.3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.

8

Not submitted to IEEE Trans. Appl. Supercond.



• High-­‐order	
  and	
  isogeometric	
  methods	
  

• Domain	
  decomposiJon	
  techniques	
  

• MulJscale	
  methods	
  

• StochasJc	
  solvers	
  

• Homology	
  &	
  cohomology	
  solvers

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015.
Invited keynote presentation 3A-LS-O1.3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.

9

Not submitted to IEEE Trans. Appl. Supercond.



• Uncertain	
  geometry	
  
and/or	
  material	
  laws	
  

• Efficient	
  calculaJon	
  of	
  
probability	
  distribuJon	
  
of	
  quanJJes	
  of	
  interest
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Fig. 1. Mesh used for the numerical experiments [20]: (a) full head (300 000 nodes, 27 tissues); (b) grey matter; (c) white matter.

nervous system (CNS) recommended by ICNIRP are
mA/m and mV/m.

B. Uncertainties

Let us focus on the fields induced in the brain. The conductiv-
ities of the white matter and of the grey matter are
modeled within a probabilistic framework, as functions of the
random variable . Therefore ,
and are random as well. In particular, by using the max-
imum entropy principle [22] we model (arbitrarily) and

as independent random variables, uniformly distributed

(1)

(2)

C. The Nonintrusive Approach

As the conductivities of the brain and the cerebellum are two
independent random variables of finite variance, we can ex-
pand them as a truncated series of order in the bidimen-
sional Hermite polynomials of a random gaussian vector

, known as Hermite chaos polynomials [18]

(3)

(4)

where and are scalar values that depend on the proba-
bilistic law of the conductivities, is the number of
bidimensional polynomials of order less than , and is the
th bidimensional Hermite polynomial. To solve the stochastic

problem, we use an approach based on a polynomial chaos de-
composition of both the conductivity and the induced fields [18].
We assume the conductivities to be of finite variance, with no as-
sumption on the shape of the probabilistic distribution.

The values of the induced fields—the average current
density in the brain —are computed
by the finite element method from any couple of values

. The average density belongs to a space
that can be spanned by the polynomials and thus
written as a truncated series to an order

(5)

To compute the value of the unknown real coefficients ,
we use the orthogonality properties of the Hermite polynomials

(6)

where is the mathematical expectation. The denominator
can be computed analytically. The integral in the numerator is
computed by means of a Hermite Gauss integration scheme with

integration points [18]

(7)

with the -th Gauss point and the associated
weight in the bidimensional Cartesian rule. The deterministic
problem must thus be computed times, with the conductivity
evaluated through (3) and

.
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Fig. 2. Probability density of in the grey matter for
and (blue), (red), (green).

III. RESULTS AND DISCUSSION

The non intrusive method is governed by three parameters:
and is linked to the precision on the approxi-

mation made on the input random variables and
is the order of truncation of the studied global quantities

( and the corresponding quantities for the
electric field) and is the number of quadrature points. Herein,
we have chosen , while and vary. For the sake of
conciseness, we deal with the white and grey matter (though the
method could handle other tissues during the same computation
as well).

A. Influence of the Input Parameters

The probability density (PD) of in the grey matter
obtained with and different values of is
shown in Fig. 2. The curves of the PD obtained with and

are nearly superposed, which proves the convergence of
the method with increasing values of .

Concerning dispersion parameters as the mean and the stan-
dard deviation, the convergence is reached as soon as
(mean: 0.0487 V/m, standard deviation: 0.07 when con-
verges to 0.0044 for ).

The PD of in the white matter obtained with
and different values of are plotted in Fig. 3.

Again, one observes that convergence is achieved as in-
creases. The value of has a minor influence on the central
dispersion parameters (mean and variance): the mean is constant
and equal to 13.1 mA/m , and the standard deviation converges
with to 3.4 mA/m . It can be observed that the sup-
port of the PD is bounded by 21 mA/m for (i.e., most
likely mA/m ): conversely, would lead to
the wrong conclusion that may exceed 21 mA/m with a
nonnegligible probability.

B. Analysis of the Results

The PD of and linked to the induced
current density in the grey matter are represented in Fig. 4 for

and . (For , the curves are very close
to those for , which proves that the method has con-
verged.) The PD of and related to the elec-
tric field in the white matter are depicted in Fig. 5 for
and . These PDs are more “peaked” than those cor-
responding to the current density, i.e., they are less dispersed
around their means. Moreover, the area under these curves for

Fig. 3. Probability density of in the white matter for
and (black), (red), (green), (blue).

Fig. 4. Probability density of (blue), (red) and (green) in
the grey matter ( ).

Fig. 5. Probability density of (blue), (red) and (green) in
the white matter .

mV/m equals 0 for and and nearly 0 for
.

In order to avoid health hazards, ICNIRP recommends
that in the central nervous system mA/m [19]
or mV/m [1]. As these global quantities are
available as a polynomial expansion like (5), we can estimate
the probability that these recommendations are not ful-
filled—e.g., in the case of [19], is: .
To this aim, a large number of couples of independent values
following a normal variable are sampled. The
polynomial expansion (5) is evaluated for each pair of values
and the number of occurrences (i.e., the number of values of

A/m ) for which the basic restriction is exceeded
are counted. The probability and the confidence interval CI
are estimated by means of the central limit theorem as

Number of occurrences
(8)
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Homology	
  &	
  cohomology	
  solvers

Consider	
  the	
  model	
  problem	
  of	
  an	
  
inductor	
  around	
  a	
  hollow	
  piece	
  of	
  
conductor:	
  

• ConducJng	
  domain	
  

• Non-­‐conducJng	
  domain	
  	
  

• Overall	
  domain	
  	
  

• Complementary	
  parts	
  of	
  
boundary	
  of	
  	
  	
  	
  	
  :	
  	
  	
  	
  	
  	
  	
  and

⌦c

⌦C
c

⌦C
c

⌦c

S1 S2

⌦ = ⌦c [ ⌦C
c

⌦
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• In	
  	
  	
  	
  	
  	
  we	
  want	
  to	
  solve	
  

together	
  with	
  consJtuJve	
  laws	
  

and	
  appropriate	
  boundary	
  condiJons

Homology	
  &	
  cohomology	
  solvers
with constitutive equations

b = µh, e = ⇢j. (4)

NEW:

curl h = j (5)

curl e = �@tb (6)

divb = 0 (7)

(8)

with constitutive equations

b = µh (9)

e = ⇢ j (10)

In order to treat the domain M as a circuit element, we apply magnetic
isolation at its boundary @M . This is achieved by the boundary condition

b · n = 0 on @M. (11)

In the non-conducting domain Ma we have no currents:

curl h = 0 in Ma, (12)

and the current cannot pass from the conducting subdomain Mc to the
non-conducting subdomain Ma. Also, the current cannot pass through the
boundary @M to the non-conducting subdomain Ma. Thus, the conditions

j · n = 0 on @Ma \ @Mc and on Ma \ @M = S2 (13)

are required to hold at the interfaces. The terminals on Mc \ @M which
connect the inductor coil to an external circuit are modeled as equipotential
surfaces, i.e. as perfectly conducting surfaces. Thus, we apply a boundary
condition

e⇥ n = 0 on Mc \ @M = S1 (14)
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boundary @M to the non-conducting subdomain Ma. Thus, the conditions

j · n = 0 on @Ma \ @Mc and on Ma \ @M = S2 (13)

are required to hold at the interfaces. The terminals on Mc \ @M which
connect the inductor coil to an external circuit are modeled as equipotential
surfaces, i.e. as perfectly conducting surfaces. Thus, we apply a boundary
condition

e⇥ n = 0 on Mc \ @M = S1 (14)

2

⌦

• In	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  thus	
  ⌦C
c j = 0 curl h = 0
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We	
  can	
  drive	
  the	
  problem	
  either	
  by	
  
the	
  net	
  current	
  through	
  the	
  
terminals	
  

or	
  by	
  the	
  net	
  voltage	
  difference	
  
between	
  the	
  terminals

Homology	
  &	
  cohomology	
  solvers

on them.
Note that the boundary @M is now decomposed on two parts according

to the boundary condition applied on it: @M = S1 \ S2. On S1 = Mc \ @M
we have the condition e⇥n = 0 and on S2 = Ma\@M we have the condition
j · n = 0. We can either drive the problem by the net current Is through the
terminals, or by the net voltage di↵erence Vs between the terminals:

Z

⇣

e · dl = Vs, (15)

Z

⌃

j · n da =

Z

⌃

curl h · n da =

Z

@⌃

h · dl = Is, (16)

(17)

where ⇣ is a curve on S2 between the terminals on S1 and ⌃ ⇢ M is a
surface that isolates the terminals. The boundary @⌃ also lies on the part
S2 of the boundary of the domain. In addition, the fields e and j are linked
by the constitutive equation e = ⇢j. All these considerations hint a duality
between the electric field e and the current density j and between the voltage
and the current conditions.

A equivalence class [⇣] of curves on S2 between the terminals on S1 be-
long to so-called relative homology space H1(S2, @S2), while the class [@⌃] of
curves belong to a homology space H1(S2). The integral conditions on fields
e and j (or h) fixing Vs and Is are called cohomology conditions, since they
consider integrals over an element of a homology space.

T � ⌦ potential formulation
In this formulation we solve for the magnetic field h in M to obtain the

current density j = curl h in Mc. Let us denote by N(Ma) the set of nodes
in the mesh of Ma and by E(Mc \ (@Ma \ @Mc)) the set of edges in Mc

that are not on the interface @Ma \ @Mc of conducting and non-conducting
subdomains.

Denote by ni nodal shape functions associated with the nodes of the mesh
and by ei edge elements associated with the edges of the mesh. By Ei we
denote so-called 1-cohomology basis function, which is an integer combination
of edge elements on M :

Ei =
X

j

zji ej

3
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Homology	
  &	
  cohomology	
  solvers

• The	
  curves	
  	
  	
  	
  	
  	
  	
  belong	
  to	
  the	
  
relaJve	
  homology	
  space	
  	
  

• The	
  curves	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  belong	
  to	
  the	
  
homology	
  space	
  

• The	
  integral	
  condiJons	
  on	
  fields	
  	
  	
  	
  	
  	
  	
  	
  	
  
and	
  	
  	
  	
  	
  fixing	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  are	
  called	
  
cohomology	
  condiJons	
  (they	
  
consider	
  integrals	
  over	
  an	
  element	
  
of	
  a	
  homology	
  space)

[⇣]

[@⌃]
H1(S2)

e
Vs Ish

H1(S2, @S2)
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• At	
  the	
  discrete	
  level,	
  if	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  denote	
  the	
  sets	
  of	
  nodes	
  and	
  edges	
  on	
  
in	
  the	
  mesh,	
  and	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  the	
  associated	
  nodal	
  and	
  edge	
  shape	
  
funcJons:	
  

where	
  	
  	
  	
  	
  	
  are	
  the	
  (discrete)	
  cohomology	
  basis	
  funcJons	
  of	
  

Homology	
  &	
  cohomology	
  solvers

• Finite	
  element	
  H-­‐formulaJon:	
  look	
  for	
  the	
  magneJc	
  field	
  	
  	
  	
  	
  	
  such	
  that	
  

holds	
  for	
  appropriate	
  test	
  funcJons

h

h0

where the integer coe cient vector zi is produced by the cohomology
solver of Gmsh.

Now, the unknown magnetic field h is of the form

h =
X

i2N(Ma)

�igrad ni +
X

i2E(Mc\(@Ma\@Mc))

tiei + I1E1 + I2E2,

NEW:

h =
X

i2N(⌦C
c )

�i grad ni +
X

i2E(⌦c\(@⌦C
c \@⌦c))

hi ei + I1E1 + I2E2

where the cohomology basis functions E1 and E2 are produced by the
computation of the cohomology spaceH1(Ma) in Gmsh. That is, the function
space from which we look for the approximate solution of h is spanned by
nodal shape functions ni of Ma, edge elements ei of Mc \ (@Ma \ @Mc),
and by the cohomology basis functions Ei of the cohomology space H1(Ma).
Those functions shall also serve as the test functions in the following weak
formulation.

The weak formulation is

�
Z

M

µh · h0 dV = 0 8h0 (18)
Z

Mc

⇢curl h · curl h dV + i!

Z

M

µh · h0 dV = �
Z

S2

e⇥ h0 · n da 8h0,

(19)

where

h0 2 {grad ni, ei,E1,E2} and

Z

S2

e⇥ h0 · n da =

(
Vi when h0 = Ei

0 otherwise.

(20)

NEW:

@t

Z

⌦

µh · h0 dV +

Z

⌦c

⇢ curl h · curl h dV = �
Z

S2

e⇥ h0 · n da (21)

By plugging in the expression for h one can construct a linear system
from which the unknown coe cients �i, ti and Vi or Ii can be solved. Note

4

N E
ni ei

Ei H1(⌦
C
c )

where the integer coe cient vector zi is produced by the cohomology
solver of Gmsh.

Now, the unknown magnetic field h is of the form

h =
X

i2N(Ma)

�igrad ni +
X

i2E(Mc\(@Ma\@Mc))

tiei + I1E1 + I2E2,

NEW:

h =
X

i2N(⌦C
c )

�i grad ni +
X

i2E(⌦c\(@⌦C
c \@⌦c))

hi ei + I1E1 + I2E2

where the cohomology basis functions E1 and E2 are produced by the
computation of the cohomology spaceH1(Ma) in Gmsh. That is, the function
space from which we look for the approximate solution of h is spanned by
nodal shape functions ni of Ma, edge elements ei of Mc \ (@Ma \ @Mc),
and by the cohomology basis functions Ei of the cohomology space H1(Ma).
Those functions shall also serve as the test functions in the following weak
formulation.

The weak formulation is

�
Z

M

µh · h0 dV = 0 8h0 (18)
Z

Mc

⇢curl h · curl h dV + i!

Z

M

µh · h0 dV = �
Z

S2

e⇥ h0 · n da 8h0,

(19)

where

h0 2 {grad ni, ei,E1,E2} and

Z

S2

e⇥ h0 · n da =

(
Vi when h0 = Ei

0 otherwise.

(20)

NEW:

@t

Z

⌦

µh · h0 dV +

Z

⌦c

⇢ curl h · curl h0 dV +

Z

S2

e⇥ h0 · n da = 0 (21)

By plugging in the expression for h one can construct a linear system
from which the unknown coe cients �i, ti and Vi or Ii can be solved. Note

4
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Homology	
  &	
  cohomology	
  solvers

In	
  pracJce:
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Homology	
  &	
  cohomology	
  solvers

E1 =
X

j

zj1ej
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Homology	
  &	
  cohomology	
  solvers

E2 =
X

j

zj2ej
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• Parametric	
  3D	
  geometry	
  (in	
  “helix.geo”	
  file):	
  	
  

• Number	
  and	
  layers	
  of	
  superconducJng	
  filaments	
  

• Twist	
  pitch,	
  radius	
  of	
  surrounding	
  air	
  box,	
  conducJng	
  matrix	
  
and	
  filaments	
  

• Nonlinear	
  H-­‐formulaJon,	
  with	
  imposed	
  Jme-­‐varying	
  (total)	
  current	
  
(in	
  “helix.pro”	
  file):	
  

• No	
  ficJJous	
  conducJvity	
  in	
  the	
  air,	
  current	
  imposed	
  through	
  
cohomology	
  basis	
  funcJon	
  

• Nonlinear	
  resisJvity:	
  

• Implicit	
  Euler	
  Jme-­‐stepping

Example:	
  superconduc8ng	
  wire

⇢ =
Ec

Jc
(
kjk
Jc

)n�1
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Example:	
  superconduc8ng	
  wire

• You	
  can	
  give	
  it	
  a	
  try	
  now:	
  

• Download	
  the	
  code	
  from	
  hfp://onelab.info	
  

• Uncompress	
  the	
  archive	
  and	
  launch	
  Gmsh	
  (	
  	
  	
  	
  	
  icon)	
  

• Open	
  the	
  file	
  “models/superconductors/helix.pro”	
  with	
  the	
  
“File>Open”	
  menu	
  

• Change	
  some	
  parameters	
  and	
  click	
  on	
  “Run”	
  

• The	
  code	
  combines	
  the	
  mesh	
  generator	
  Gmsh	
  (hfp://gmsh.info)	
  
and	
  the	
  finite	
  element	
  solver	
  GetDP	
  (hfp://getdp.info).	
  Both	
  are	
  
free	
  soiware,	
  released	
  under	
  GNU	
  GPL.	
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Demo!

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015.
Invited keynote presentation 3A-LS-O1.3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.

22

Not submitted to IEEE Trans. Appl. Supercond.

http://onelab.info
http://onelab.info
http://gmsh.info
http://gmsh.info
http://getdp.info
http://getdp.info


Conclusion	
  &	
  thanks

• Many	
  exciJng	
  developments	
  in	
  computaJonal	
  electromagneJcs	
  

• All	
  examples	
  from	
  this	
  talk	
  solved	
  with	
  the	
  open	
  source	
  codes	
  
Gmsh	
  and	
  GetDP	
  —	
  more	
  examples	
  on	
  hfp://onelab.info	
  

• SuperconducJng	
  wire	
  example	
  developed	
  in	
  collaboraJon	
  with	
  

• Ank	
  Stenvall	
  (Tampere	
  University)	
  

• Abelin	
  Kameni	
  (Supelec	
  &	
  Université	
  Paris	
  XI)	
  

Available	
  on	
  hfp://onelab.info/wiki/SuperconducJng_wire	
  

• For	
  more	
  informaJon	
  (references,	
  preprints,	
  codes,	
  etc.),	
  see 
hfp://www.montefiore.ulg.ac.be/~geuzaine

cgeuzaine@ulg.ac.be

Thank you for your attention

Papers/preprints: cgeuzaine@ulg.ac.be
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