Recent Developments in Finite Element Methods for Electromagnetic Problems

Christophe Geuzaine

University of Liège, Belgium

EUCAS 2015 - September 9th 2015

A (subjective) selection

- High-order and isogeometric methods for fast convergence
- Domain decomposition techniques for large scale computations
- Multiscale methods for microstructured, hysteretic materials
- Stochastic solvers for material/geometric uncertainties
- Homology & cohomology solvers for field-potential problems
- ...

- High-order and isogeometric methods
- Domain decomposition techniques
- Multiscale methods
- Stochastic solvers
- Homology & cohomology solvers

- High-order polynomial approximations: curved mesh generation; provable validity
- Isogeometric analysis: directly based on CAD (e.g. T-splines)

- High-order and isogeometric methods
- Domain decomposition techniques
- Multiscale methods
- Stochastic solvers
- Homology & cohomology solvers

- Split computational domain into subdomains, and iterate
- Scalability requires "coarse grid" (long-distance information exchange); open problem for high-frequency wave propagation

 Time-domain approaches gaining traction (Waveform relaxation, Parareal, ...)

- High-order and isogeometric methods
- Domain decomposition techniques
- Multiscale methods
- Stochastic solvers
- Homology & cohomology solvers

downscaling upscaling

- Modern computer architectures enable fully computational homogenization
- Possibly heterogeneous models
- Convergence of local (in the microstructure) and global quantities

- High-order and isogeometric methods
- Domain decomposition techniques
- Multiscale methods
- Stochastic solvers
- Homology & cohomology solvers

 $\sigma_G(\omega) \sim \text{U}([0.0753; 0.5155]) \text{ (S/m)} \quad \sigma_W(\omega) \sim \text{U}([0.0533; 0.3020]) \text{ (S/m)}.$

- High-order and isogeometric methods
- Domain decomposition techniques
- Multiscale methods
- Stochastic solvers
- Homology & cohomology solvers

Consider the model problem of an inductor around a hollow piece of conductor:

- Conducting domain Ω_c
- ullet Non-conducting domain Ω_c^C
- Overall domain $\Omega = \Omega_c \cup \Omega_c^C$
- Complementary parts of boundary of Ω : S_1 and S_2

• In Ω we want to solve

$$\mathbf{curl} \, \mathbf{h} = \mathbf{j}$$

$$\mathbf{curl} \, \mathbf{e} = -\partial_t \mathbf{b}$$

$$\operatorname{div} \mathbf{b} = 0$$

together with constitutive laws

$$\mathbf{b} = \mu \, \mathbf{h}$$
$$\mathbf{e} = \rho \, \mathbf{j}$$

and appropriate boundary conditions

• In Ω_c^C , $\mathbf{j}=0$ and thus $\operatorname{\mathbf{curl}} \mathbf{h}=0$

We can drive the problem either by the net current through the terminals

$$\int_{\Sigma} \mathbf{j} \cdot \mathbf{n} \, \mathrm{d}a = \int_{\Sigma} \mathbf{curl} \, \mathbf{h} \cdot \mathbf{n} \, \mathrm{d}a = \int_{\partial \Sigma} \mathbf{h} \cdot \mathrm{d}\mathbf{l} = I_s$$

or by the net voltage difference between the terminals

$$\int_{\zeta} \mathbf{e} \cdot \mathbf{dl} = V_s$$

- The curves $[\zeta]$ belong to the relative homology space $H_1(S_2,\partial S_2)$
- The curves $[\partial \Sigma]$ belong to the homology space $H_1(S_2)$
- The integral conditions on fields e and h fixing V_s and I_s are called cohomology conditions (they consider integrals over an element of a homology space)

ullet Finite element H-formulation: look for the magnetic field ${f h}$ such that

$$\partial_t \int_{\Omega} \mu \, \mathbf{h} \cdot \mathbf{h}' \, dV + \int_{\Omega_c} \rho \, \mathbf{curl} \, \mathbf{h} \cdot \mathbf{curl} \, \mathbf{h}' \, dV + \int_{S_2} \mathbf{e} \times \mathbf{h}' \cdot \mathbf{n} \, da = 0$$

holds for appropriate test functions \mathbf{h}'

• At the discrete level, if N and E denote the sets of nodes and edges on in the mesh, and \mathbf{n}_i and \mathbf{e}_i the associated nodal and edge shape functions:

$$\mathbf{h} = \sum_{i \in N(\Omega_c^C)} \phi_i \operatorname{\mathbf{grad}} \mathsf{n}_i + \sum_{i \in E(\Omega_c \setminus (\partial \Omega_c^C \cap \partial \Omega_c))} h_i \, \mathsf{e}_i + I_1 \mathsf{E}_1 + I_2 \mathsf{E}_2$$

where E_i are the (discrete) cohomology basis functions of $H_1(\Omega_c^C)$

In practice:

$$\mathsf{E}_1 = \sum_j z_1^j \mathsf{e}_j$$

Example: superconducting wire

- Parametric 3D geometry (in "helix.geo" file):
 - Number and layers of superconducting filaments
 - Twist pitch, radius of surrounding air box, conducting matrix and filaments
- Nonlinear H-formulation, with imposed time-varying (total) current (in "helix.pro" file):
 - No fictitious conductivity in the air, current imposed through cohomology basis function
 - Nonlinear resistivity: $\rho = \frac{E_c}{J_c} (\frac{\| \boldsymbol{j} \|}{J_c})^{n-1}$
 - Implicit Euler time-stepping

Example: superconducting wire

- You can give it a try now:
 - Download the code from http://onelab.info
 - Uncompress the archive and launch Gmsh (▲ icon)
 - Open the file "models/superconductors/helix.pro" with the "File>Open" menu
 - Change some parameters and click on "Run"
- The code combines the mesh generator Gmsh (http://gmsh.info) and the finite element solver GetDP (http://getdp.info). Both are free software, released under GNU GPL.

Example: superconducting wire

- You can give it a try now:
 - Download the code from http://onelab.info
 - Uncompress the archive and launch Gmsh (<u>A</u> icon)
 - Open the file "models/superconductors/helix.pro" with the "File>Open" menu
 - Change some parameters and click on "Run"
- The code combines the mesh generator Gmsh (http://gmsh.info) and the finite element solver GetDP (http://getdp.info). Both are free software, released under GNU GPL.

Demo!

Conclusion & thanks

- Many exciting developments in computational electromagnetics
- All examples from this talk solved with the open source codes
 Gmsh and GetDP more examples on http://onelab.info
- Superconducting wire example developed in collaboration with
 - Antti Stenvall (Tampere University)
 - Abelin Kameni (Supelec & Université Paris XI)

Available on http://onelab.info/wiki/Superconducting_wire

 For more information (references, preprints, codes, etc.), see http://www.montefiore.ulg.ac.be/~geuzaine

□ cgeuzaine@ulg.ac.be