

EUCAS 2015 September 8, 2015 Lyon Convention Centre

Yokohama Project (240m, 66kV, 200MVA HTS cable)

Special Session (2A-LS-01.3)

Large Scale – Industries and utilities

Masayoshi Ohya
(Sumitomo Electric Industries, Ltd.)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO)

1. Backgrounds

2. Demonstration Project (2007-2013)

-Japan's first live power transmission-

3. New Project (2014-2016)

-safety and reliability-

Power transmission grid (Japan)

■Power stations → Orbital lines : 500 kV overhead lines

Orbital lines → Urban area : 275~66 kV underground cables

Power transmission grid (Japan)

- □ For OF cables, 20 years have passed since the installation.
- □ The replacement of OF cables is planed around 2020.

Motivation for HTS cables

Replacement of old OF cables with increasing capacity

CV cables
Tunnel image
275kV, 700MVA/3cct

HTS cables Duct installation image 66kV, 700MVA/3cct

Installed within existing conduits

Reduction of initial costs of HTS cable system

"High density" → reduction of civil engineering costs "Low loss" → reduction of cooling system capacity

Development of HTS cables @SEI

1993

1995

1996-1999

2000

3-ph. energization (7m, 1kA)

30m prototype test (66kV-1kA, 1-ph.)

2004

2006

2006

2007-2012

Over-pressure

KEPCO project (100m, 22.9kV-1.25kA)

ALBANY project "World's first in-grid" (350m, 34.5kV-0.8kA) Yokohama project (250m, 66kV-3kA)

◆ SUMITOMO ELECTRIC

Ingenious Dynamics

Outline

High temperature superconducting cable demonstration project

July 2007 \sim March 2014 (7 years)

Purpose

- To verify the reliability and stability of HTS cable operation in a live grid (one year operation)
 - System controllability for load fluctuation
 - Monitoring and alarming system
 - Maintenance method while cable is online

Budget

3.1 B¥ (26 M\$) for 7 years

Member

NEDO (Project management)

TEPCO (Utility, Project leader)

Sumitomo Electric (Cable manufacturer)

Mayekawa Co. (Cooling system manufacturer)

Cable structure

Cooling system

6 refrigerators and 2 circulation pumps for redundancy

·Flow rate: 40 L/min

·Pressure: 0.2~0.25 MPaG

(Internal pressure of the reservoir tank)

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015. EUCAS 2015 invited presentation 2A-LS-01.3. Not submitted to *IEEE Trans. Appl. Supercond.*

In grid operation (October 2012 – December 2013)

□ The cable transmitted electricity to 70,000 house holders without any unplanned interruptions or failures.

1) Heat loss at no load

Heat loss from ambient is measured and has good agreement with design (2.4 kW)

Cable

Straight section: 3 W/m Bending section: 10 W/m

→increase by side force

☐ Heat loss reduction is essential for real product

2 Performance of refrigerator

Cooling capacity degraded during in-grid operation

- \triangleright Evacuating vacuum vessel: 30 \sim 100 W/unit improving
- Factory's maintenance: 150~400 W/unit improving
- □ The improvement maintenance interval is essential

3 Performance of cooling system

System COP = [cooling power] / [power consumption] = 0.042

Cooling power	2.53 kW
Power consumption	60.32 kW
(Refrigerator)	55.38 kW
(LIN pump)	0.28 kW
(Cooling water)	4.66 kW

- □ For bringing HTS profit into commercial use, system COP must reach to 0.1 or more
- > Improve refrigerator efficiency
- Reduce number of valves and piping

Remaining issues

Items	Results	Future efforts		
Cryostat	Straight: 3 W/m Bending: 10 W/m	Development of low heat loss cryostat •1.0 W/m level		
Refrigerator	Increase of heat loss and degradation of cooling power (vacuum degradation)	Improvement of performance of refrigerator (Brayton refrigerator system) ·Higher efficiency ·Larger cooling capacity ·Longer maintenance interval		
Safety verification	No serious accident	Verification of safety and reliability against accidents •Ground fault •Short-circuit current •Cryostat damage		

Outline

Studies on the safety and reliability of the nextgeneration power transmission system

July 2014 \sim March 2017 (3 years)

Purpose

- To verify the safety and reliability of HTS cables at accidents by conducting model tests with actual dimension cable for 22 kV, 66kV and 275 kV class.
- ☐ To develop **5 kW class Brayton refrigerator system** with higher performance and to confirm its stable operation in the grid at Asahi SS.

<u>Budget</u>

1.2 B¥ (10 M\$) for 3 years

<u>Member</u>

NEDO (Project management)

TEPCO (Utility, Project leader)

Sumitomo Electric, Furukawa Electric, Fujikura (Cable manufacturer) Mayekawa Co. (Refrigerator manufacturer)

Cable specifications

Items	22 kV/12 kA	66 kV/2 kA	275 kV/3 kA		
Structure	Protection Cu tapes Insulation HTS conductor Cu conductor Cu conductor Cu century Liquid nitrogen (Go) Liquid nitrogen (Return)	Protection Cu shield HTS shield HTS conductor Cu conductor Liquid nitrogen Cryostat	Protection HTS shield Insulation Liquid nitrogen (Go)		
	Single	3-in-One	Single		
Made by	SEI	SEI	Furukawa, Fujikura		
Application	Feeder line of generator	Urban underground	Urban underground		
Neutral grounding	Resistance	Resistance	Solid		
Ground fault current	about 100 A	~ 1500 A	~ 31.5 kA (underground) ~ 63 kA (overhead)		
Short-circuit current	~ 63 kA	~ 31.5 kA	~ 63 kA		

Member and research items

Res	earch items	TEPCO	SEI	Furukawa	Fujikura	мусом		
①: Testing for Safety and Reliance								
Design and Plan of testing method		0	\bigcirc	\bigcirc	\bigcirc	\circ		
Short-circuit current test	22 kV		0					
	66 kV		0					
	275 kV			0	\bigcirc			
Ground fault test	66 kV		0					
	275 kV			0	\bigcirc			
Cryostat damage test	Vacuum deterioration		0	0				
	LN ₂ leakage		0					
②: Development of High Performance Cooling System								
Low loss cryostat		\circ	\bigcirc			0		
High efficiency cooling system		\circ	\circ			0		
③: Study on recovery method		0	0	0		\circ		

Research items

Safety & reliability verification

Ground fault

> Short-circuit current

Brayton refrigerator system

- > Large capacity: 5 kW
- > High COP: 0.1
- Maintenance interval: 30,000 H

Low loss cryostat

Heat loss: 1.0 W/m

Conclusions

Demonstration project

- Stability and reliability in normal operation has been verified by real grid interconnection tests.
- > Development of a high efficiency cooling system and a low loss cryostat is essential for practical use.

New cable project

- ➤ The aim is to verify and improve the safety and reliability of HTS cable systems in the event of the following accidents:

 (1) ground fault, (2) short-circuit current, (3) cryostat failure.
- ➤ We are also developing technologies such as (4) a low heat loss cryostat and (5) a high efficiency cooling system.