IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015.

Invited presentation 3A-E-02.1 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015. Not submitted to IEEE Trans. Appl. Supercond.

Hot-electron nanobolometers for astrophysics: superconductor vs normal metal

Boris Karasik

Credits

Robin Cantor

Faustin Carter

Peter Day

Bertrand Delaet

Michael Gershenson

Dennis Harding

Jonathan Kawamura

Chris McKitterick

Steve Monacos

David Olaya

Sergei Pereverzev

Dan Prober

Theodore Reck

Dan Santavicca

Andrei Sergeev

Alex Soibel

Jian Wei

STAR Cryoelectronics

ANL

JPL

CEA-LETI

Rutgers University

JPL

JPL

Yale University

JPL

NIST

LLNL

Yale University

JPL

North Florida University

SUNY at Buffalo

JPL

Peking University

Outline

TES nano-HEB

Thermal conductance and energy relaxation

Nano-HEB for THz power detection

Readout and array multiplexing

Single-photon detection

Normal metal nano-HEB

Summary

Superconducting direct detectors

- High sensitivity (low NEP)
- High energy resolution
- High speed

Far-IR line spectroscopy with moderate resolution $v/\delta v \sim 1000$ in space

SPICA, Millimetron, SAFIR, SPECS, CALISTO

- Power detection below 1 THz
- Photon counting above 1 THz

photon-noise limited NEP_{phot.}

Karasik & Sergeev, IEEE Trans. Appl. Supercond. 15, 618 (2005)

$$NEP_{phot} = hv(2N_{phot.})^{1/2}$$

Invited presentation 3A-E-O2.1 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015. Not submitted to *IEEE Trans. Appl. Supercond.*"Leg-isolated" bolometer

Spider-web bolometer (J. Bock/JPL)

$$NEP_{TEF} = (4k_BT^2G)^{1/2}$$
 "phonon" noise

$$\delta \varepsilon \approx (k_B T^2 C)^{1/2}$$

Transition-Edge Sensor (TES)

Electro-thermal feedback (ETF)

$$\tau^* = \frac{\tau}{1 + (\alpha/n) f(R_L, R)} \quad \alpha = \frac{T_C}{R} \frac{dR}{dT}, \quad n = 2 \div 4$$

 $τ^* < τ$ negative ETF

 $\tau^* > \tau$ positive ETF

Mather, *Appl. Opt.* **21**, 1125 (1982) Irwin, *Appl. Phys. Lett.* **66**, 1998 (1995) Karasik & Elantev, *Proc. ISSTT* (1995)

Phonon-cooled nano-HEB

Karasik et al., SUST 12, 745 (1999) J. Appl. Phys. 87, 7586 (2000)

 $G \rightarrow G_{e-ph} \sim volume$ τ_{e-ph} does not depend on volume

A 0.5-µm-long Ti device with Nb contacts on Si

Wei et al., Nat. Nano. 3, 496 (2008)

$$\tau_{dif.} = L^2/\pi^2 D \sim 0.1 \text{ ns}$$

$$NEP_{TEF} = (4k_BG_{e-ph}T_e^2)^{1/2}$$

Büchel et al., IEEE Trans. THz Sci.&Technol. 5, 207 (2015) Boussaha et al., IEEE Trans. THz Sci.&Technol. 2, 284 (2012)

Karasik & Cantor, Appl. Phys. Lett. 98, 193503 (2011)

Femtowatt radiation power source

HEB device size	T _C (mK)	NEP (aW/Hz ^{1/2})	NEP _{TEF} (aW/Hz ^{1/2})	NEP _{TEE} /NEP
211m v 111m	150	1.4	1.0	0.71
2μm x 1μm	357	8.6	6.3	0.73
1μm x 1μm	105	0.30	0.23	0.77
	367	3.0	2.5	0.83

good optical coupling efficiency!

NEP_{TEF} in small devices was 10 times higher than that expected from the G-measurements in very long Ti samples

GHz FDM SQUID readout

Karasik et al., AIP Conf. CP1185, 257 (2009); SPIE 7741, 774119 (2010)

Single-photon HEBs

Tungsten TES for optical astronomy

main goal: high energy resolution operates at very low temperature $\approx\!40$ mK typical bandwidth $^{\sim}$ kHz set by $\tau_{\rm e-ph}$

uses negative electrothermal feedback ETF =>
more linear and faster response

Cabrera et al., Appl. Phys. Lett. 73, 735 (1998)

Tungsten TES for quantum cryptography

high energy resolution inherent in the detectors allows for photon-number states discrimination

$$P(n) = (\mu^n/n!)e^{-\mu}$$

Poisson-Gaussian distribution ($\mu = 4$, $\sigma = 0.12$ eV)

Miller et al., Appl. Phys. Lett. 83, 791 (2003)

Microwave technique for determination of dE

using a microwave reflectometry technique with 20 GHz short pulses simulating 8- μ m photons (fauxtons), dE_{FWHM} \approx 0.1 eV at 300 mK has been determined, very close to the theory prediction

Setup for generation & detection of 8-µm photons

a Ti HEB device with a volume $\sim 0.1 \ \mu m^3$ at 50-100 mK

an 8-µm Quantum Cascade Laser (QCL) at 4K

a metal light pipe guides light to the nano-HEB placed in a light tight box

short triggered pulses ($<<\tau$)

attenuation and filtration of radiation at 4K, 0.8K, and at the mixing chamber in order to block any thermal background radiation and to make the average number of photons per pulse μ < 1

collection of 10,000 triggered events. Plotting statistics of the pulse amplitudes at a given time position

Detection of single 8-µm photons

dE_{FWHM} ≈ 110 meV is the best energy resolution figure for superconducting calorimeters

bolometric theory predicts $dE_{FWHM} \approx 2.35(k_BC_eT^2)^{1/2} = 38 \text{ meV}$

single 8-µm photons have been detected with record energy resolution.

the minimum resolved energy is h × 27 THz (0.11 eV)

Karasik et al., Appl. Phys. Lett. 101, 052601 (2012)

Mid-IR antennas

Prospect of single THz photon detection

Microwave-photon-mediated cooling

because of the opposite temperature dependencies of $\tau_{\text{e-ph}}$ and $\delta\epsilon$, the low NEP requirement (small $\delta\epsilon$) and the large dynamic range requirement (small τ) are hard to meet simultaneously

connecting a nanodevice to a cold resistor via a transmission line on the same chip will enable an additional efficient cooling mechanism through the emission of 1D microwave (GHz) photons which will reduce the time constant in the the nano-HEB

Schmidt et al., *Phys. Rev. Lett.* **93**, 045901 (2004)

the thermal conductance derived from the IV characteristics turned out to be higher than expected which suggests that the Al contacts did not provide the sufficient Andreev reflection blocking

Features of superconducting nano-HEB

Real device impedance from MM up to UV wavelengths

Small device size is needed for low NEP \Rightarrow microantennas and waveguides must be used (available)

Relatively simple fabrication (2-3 layers), does not require membranes

Low intrinsic noise

Sufficiently low NEP for the most demanding applications

Promising single-photon detection capabilities

Operates at or below $T_C \Rightarrow$ material development is needed for a particular application

The SQUID based readout is quite complex

Small saturation power / Low dynamic range in the power detection mode

Normal metal HEB (NM HEB)

Nahum & Martinis, *Appl. Phys. Lett.* **63**, 3076 (1993)

NM nano-HEB with Johnson noise thermometry (JNT) readout

$$\Delta T_{e} \sim P_{rad}/(G_{e-ph} + G_{\gamma})$$

Johnson noise power $P_N \approx k_B \Delta f T_e$

Small photon occupation number effects (hf >> k_BT_e)

In the Rayleigh-Jeans limit (f $<< k_B T_e/h$), $G\gamma = k_B \Delta f$

QL amplifier: $T_A = hf/2k_B$

Karasik et al. IEEE Trans. THz Sci. Technol. 5, 16 (2015)

 $T_A \approx 0.6 \text{ K (SQUID rf amp.)}$ $\Delta f = 10 \text{ MHz}$ $NEP = 3 \times 10^{-16} \text{ W/Hz}^{1/2}$

r		ì
ı		
ı		
ı		
۱	V	

S/C	NM
-----	----

 $NEP \sim 10^{-20} \text{ W/Hz}^{1/2}$ $NEP \sim 10^{-19} \text{ W/Hz}^{1/2}$

Small dynamic range ~ 30 dB, Large dynamic range > 100 dB, hard saturation no hard saturation

Tuning T_C for a large array needs serious Works at any temperature up to \sim 10 K material development

A SQUID based transceiver is needed for A spectrometer is needed for readout array readout

Karasik et al., IEEE Trans. THz Sci. Technol. 1, 97 (2011) Karasik et al. IEEE Trans. THz Sci. Technol. 5, 16 (2015)

Summary

The TES nano-HEB detector has demonstrated an excellent sensitivity in the far-IR

With some improvement of the fabrication technique, the NEP could be lowered to $\sim 10^{-20}$ W/Hz^{1/2}

Normal metal nano-HEB offers the simplicity of fabrication and architecture with the benefit of large dynamic range and low NEP ~ 10⁻¹⁹ W/Hz^{1/2}

The ability to detect single mid-IR photons is quite unique and may find applications in astrophysics, free-space quantum communication, single-molecule spectroscopy, etc.

Experimental astrophysics remains to be the area where the demand for better detectors is strong and drives the search for new detection mechanisms

The work described in this presentation was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration