

HfTi-nanoSQUIDs for nanoscale magnetic detection

PTB Berlin

<u>Sylke Bechstein</u>, Claudia Köhn, Jan-Hendrik Storm, Dietmar Drung, Marianne Fleischer-Bartsch, Thomas Schurig

PTB Braunschweig

Oliver Kieler, Johannes Kohlmann, and Thomas Weimann

SQUID – Applications at PTB

Biomedical Analytical Methods

Metrology

Material Characterization

Dc SQUIDs

dc SQUID

- C junction capacitance
- L SQUID loop inductance
- R resistance
- F magnetic flux
- F₀ flux quantum
- V voltage
- WP working point

Washer SQUID with SIS junctions (Nb/AlO_x/Nb)

Periodic flux-to-voltage characteristic.

Dc SQUIDs

dc SQUID

- C junction capacitance
- L SQUID loop inductance
- R resistance
- F magnetic flux
- **F**₀ flux quantum
- V voltage
- WP working point

Washer SQUID with cross-type SIS junctions (Nb/AlOx/Nb),

M. Schmelz et al., Appl. Phys. Lett. 102, 192601 (2015)

SQUID with SNS junctions (Nb/HfTi/Nb), microstrip geometry,

R. Wölbing et al., Appl. Phys. Lett. 102, 192601 (2013)

SQUID with constriction junctions, Nb/Al bilayer

C. Granata et al, Nature Nanotechnol. 19, 275501 (2006)

Periodic flux-to-voltage characteristic.

Dc SQUID Readout

- C junction capacitance
- L SQUID loop inductance
- F magnetic flux
- F₀ flux quantum
- V voltage
- V_B bias voltage
- I_B bias current
- R_F feedback resistor
- F_F feedback flux
- WP working point

Flux-locked loop (FLL) operation

WP is kept stable on the periodic flux-to-voltage characteristic.

5

Dc SQUID Readout

2-stage Readout

Demands for High Energy Resolution

$$\varepsilon = S_{\Phi}/(2L)$$

$$S_{\Phi} \approx 2L^* 16k_B T^* (LC)^{1/2}$$

- efficiency ~ coupling or filling factor
 - → small dimensions → lower SQUID inductance + junction capacitance
- high energy resolution

 low and ultra-low temperatures
- high dynamic range
- high tolerance against applied magnetic field

UNIVERSITAT

ROYAL HOLLOWAY

CSIRO

Nb/HfTi/Nb-NanoSQUIDs

Josephson junctions:

Intrinsically shunted SNS Junctions with HfTi

Nominal lateral size: ca. 200nm x 200nm (180nm/220nm/240nm/260nm)

Nominal barrier thickness: 30nm

Distance between JJs: ≤ 1µm

Design: PTB Berlin

Fabrication: PTB Braunschweig

SQUID Sensors:

- § SQUID gradiometers
- § SQUID current sensors

Complements:

- § feedback
- § rf filter
- § 3 (4) different transformers

Device Family

nSQUID parallel gradiometer

nSQUID series gradiometer

µSQUID series gradiometer

nSQUID current sensor

S. Bechstein et al., "HfTi-nanoSQUID gradiometers with high linearity," Applied Physics Letters 106, 072601 (2015); doi: 10.1063/1.4909523

Transformers of Gradiometers

Fabrication

- § Clean room center Braunschweig
- § Electron beam lithography
- § Chemical mechanical polishing process (CMP)
- § Supporting structures consisting of Nb1 and HfTi integrated in design
 - § homogeneous polished junctions
 - § negligible small changes of I_c across the wafer area
 - § protecting isolation @ bridges (e.g. filters)

Clean room center (PTB Braunschweig)

high rate of yield

Inductance and Flux Noise

Setup: 2-stage configuration with SSA, FLL mode

magnetic flux noise independent on type of transformer 110 n $\Phi_0/\sqrt{\text{Hz}}$ achievable

Low-Frequency Flux Noise

low-frequency noise reduced with bias reversal in 2-stage configuration \dot{a} source: fluctuations (I_c , R)

S. Bechstein et al., "HfTi-nanoSQUID gradiometers with high linearity," *Applied Physics Letters* 106, 072601 (2015); doi: 10.1063/1.4909523

Susceptometer Application

Setup: 2-stage configuration with SSA, FLL mode

HfTi-nanoSQUID gradiometers with GCT: linear (a) and nonlinear (b) part very low suitable for susceptometer applications J

NEMS Application

Setup: 1-stage configuration, AMP mode

Maximum voltage swing of a nanoSQUID series gradiometer with C7-transformer versus dc magnetic field.

Voltage across the nanoSQUID series gradiometer versus magnetic flux (perpendicular to the SQUID loop).

suitable for NEMS readout J

NEMS Application

Setup: 2-stage configuration with SSA, AMP mode

Voltage of a nanoSQUID series gradiometer with GCT/SSA combination versus magnetic flux.

Section of a combination of a nanoSQUID series gradiometer with GCT and NEMS (cooperation with NPL).

suitable for NEMS readout J

Summary / Outlook

Milestone: new family of HfTi-nanoSQUID sensors

- § technology well established
- § complex sensors gradiometers and current sensors with transformers, feedback circuitry, rf filters
- § low level of nonlinearity

- susceptometer application
- § field tolerance of at least a few mT up to a few 100mT depending on operation and type of transformer
- → NEMS readout

Outlook:

- § design
 - § further improvement of field tolerance, smaller structures (transformers)
 - § further adaption to each application (further specialization)
- § measurements
 - § susceptometer measurements together with partners (nano particles, molecules, single spin detection)
 - § NFMS readout

Thank you:

Corinna Neubauer Frank Ruede Lars Schikowski Kathrin Störr

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Abbestr. 2-12 10587 Berlin

Sylke Bechstein

Phon: 030 3481-7426

E-Mail: sylke.bechstein@ptb.de

www.ptb.de

Status: 06.10.2015

This work was partly supported by the DFG under Grant No. SCHU1950/5-1 and within the European Metrology Research Programme EMRP 'MetNEMS' NEW-08, which is jointly funded by the participating countries within EURAMET and the European Union.