International Conference on Magnet Technology Seoul, 18 – 23 October 2015

Magnets for the ESRF diffraction limited light source project

<u>G. Le Bec</u>^{*}, J. Chavanne, F. Villar, C. Benabderrahmane, S. Liuzzo, J.-F. Bouteille, L. Farvacque, L. Goirand, J.-C. Biasci, P. Raimondi

*lebec@esrf.fr

OUTLINE

I. Introduction

- •The ESRF light source
- •Lattice and magnets
- **II. Magnet designs and prototyping**
- •Dipole-quadrupoles
- •High gradient quadrupoles
- •Permanent dipoles with longitudinal gradient
- •Tolerances
- **III. Magnetic measurements**
- •ESRF stretched-wire benches
- •Measurement methods

IV. Conclusion

INTRODUCTION

ESRF – The European Synchrotron

- •Light source built in the 1990's
- •Located in Grenoble, France
- •6 GeV machine
- •200 mA current
- •840 m long storage ring

INTRODUCTION

ESRF-EBS project

- Increased brightness
- Horizontal emittance: 4 nm·rad → 135 pm·rad
 New storage ring
- •Same insertion devices source points
- Increased number of bending magnets
- •Reduced power consumption
- Installation in 2019

More details about ESRF upgrade in [Farvacque, IPAC 2013]

INTRODUCTION

ESRF upgraded storage ring magnets: one cell

ESRF

INTRODUCTION

ESRF upgraded storage ring magnets: one cell

COMBINED DIPOLE-QUADRUPOLES (DQ)

Tapered dipole High field, low gradient

Offset quadrupole High field, high gradient

COMBINED DIPOLE-QUADRUPOLES (DQ)

Magnetic specifications

- •DQ1: *B* = 0.57 T, *G* = 37 T/m
- •DQ2: *B* = 0.39 T, *G* = 31 T/m.

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. Invited presentation 4OrCC_01 given at MT-24, Seoul, Korea, October 18-23, 2015.

COMBINED DIPOLE-QUADRUPOLES (DQ)

COMBINED DIPOLE-QUADRUPOLES (DQ)

A new target for DQ field

Pro

- Lower power consumption and weight
- Easy access on one side (vacuum chamber, magnetic measurements)
 Cons
- Design and construction are more complex

COMBINED DIPOLE-QUADRUPOLES (DQ)

COMBINED DIPOLE-QUADRUPOLES (DQ)

Main parameters

- •0.56 T, 37 T/m
- •GFR radii: 7 mm (H), 5 mm (V)
- •1028 mm iron length
- •85 A nominal current
- •1.5 kW total power
- •Vertical gaps: 18 mm / 12 mm
- •Mass ~ 1ton
- •Independent tuning of B and G

• \pm 2.5 % at fixed *B* and \pm 2 A in correction coils

Design view of a DQ magnet (engineering design F. Villar et al.)

COMBINED DIPOLE-QUADRUPOLES (DQ)

Magnetic characteristics

Vertical field vs. transverse position No field on one side of the magnet Gradient errors vs. transverse position Specifications: $\Delta G/G < 1\%$ in GFR

QUADRUPOLES

Main quadrupole magnet parameters

High gradients

- 90 T/m gradient, 388 484 mm length
- 12.6 mm bore radius, 11 mm vertical gap
- 1.8 2.1 kW power consumption

Moderate gradient

- Up to 58 T/m gradient, 162-295 mm length
- 16.4 mm bore radius, 11 mm vertical gap
- 0.7 1.1 kW power consumption

Design view of a high gradient quad (engineering design F. Villar et al.)

QUADRUPOLES – DESIGN

Pole shape optimization

Results

Moderate gradient quadrupole G = 58 T/m $R_0 = 16.4 \text{ mm}$ Gap = 11.2 mm

High gradient quadrupole G = 90 T/m $R_0 = 12.6 \text{ mm}$ Gap = 11.2 mm

The European Synchrotron

[Le Bec, IPAC 14]

QUADRUPOLES – DESIGN

Comparison of two pole shapes

- •Sharp pole shape (reference)
- •Smoother shape obtained with different optimization 15 parameters
- •The "smooth shape" also shows sharp angles, but not at the same position.

Multipole content @ 7 mm

n	<i>b_n</i> reference	b _n smooth
6	- 0.02 10 ⁻⁴	- 0.48 10 ⁻⁴
10	0.51 10 ⁻⁴	0.80 10 ⁻⁴
14	- 0.51 10 ⁻⁴	- 0.80 10 ⁻⁴
18	0.05 10 ⁻⁴	0.07 10 ⁻⁴
22	0.00 10 ⁻⁴	0.00 10 ⁻⁴

QUADRUPOLES – DESIGN

Sensitivity to pole shape errors

- •± 0.020 mm for pole shapes
- •± 0.020 mm for pole locations
- •± 0.040 mm global pole tolerances

n	σb_n reference	σb_n smooth
3	5.2 10 ⁻⁴	5.2 10 ⁻⁴
4	2.6 10 ⁻⁴	2.1 10 ⁻⁴
5	1.3 10 ⁻⁴	1.1 10 ⁻⁴
6	0.7 10 ⁻⁴	0.6 10 ⁻⁴

→ Sensitivity to profile errors is almost the same

 2.0×10^{-3}

Reference profile

QUADRUPOLES – DESIGN

∆G/G vs. excitation current

Magnetization $\mu_0 M$ [T]. The central part of the profile saturates early due to its sharp profile. This "compensates" for the saturation of the edges and decreases the b_6 variation.

Magnets for the ESRF diffraction limited light source project – MT24, Seoul, October 2015 – Gaël LE BEC

QUADRUPOLES – HIGH GRADIENT PROTOTYPE

Prototype built

- •Designed in May 2014
- •Delivered in March 2015
- •Solid iron magnet (AISI 1010 material)
- •Magnetic measurements done
- •±0.020 mm tolerances on the assembled prototype
- •86 T/m, 484 mm iron length

High gradient prototype installed on a stretched wire measurement bench

QUADRUPOLES – HIGH GRADIENT PROTOTYPE

Measurement bench

• ESRF stretched-wire bench

Magnet strength

- Nominal current: 89 A
- Iron length: 484 mm
- Power consumption: 2.2 kW
- Meas. Int. gradient: 42.29 T at first magnetization, 42.96 T after cycling
- Sim. Int. gradient: 42.29 T
- Measured gradient: 87.1 T/m, assuming 493 mm magnetic length

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. Invited presentation 4OrCC_01 given at MT-24, Seoul, Korea, October 18-23, 2015.

QUADRUPOLES – HIGH GRADIENT PROTOTYPE

Excitation curve

Measured and simulated excitation curves.

QUADRUPOLES – HIGH GRADIENT PROTOTYPE

Field quality measurements

- •Measured with ESRF stretched wire bench
- •3 units octupole at GFR radius
- •Fits with simulations

Normal multipoles simulated and measured multipoles, expressed at the GFR radius (7 mm). The simulation includes measured pole location errors. b_2 : quadrupole (vertical axis is truncated to 3.5 10⁻⁴), b_3 : sextupole, etc.

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. Invited presentation 4OrCC_01 given at MT-24, Seoul, Korea, October 18-23, 2015.

• Gap: 25 mm

Vertical field vs. longitudinal position

- Magnet mass: 400 kg
- PM Mass: 45 kg of Sm₂Co₁₇ material

(Design and measurements of the DL magnet: J. Chavanne)

Field homogeneity

- •Quality dominated by pole faces parallelism
- •Easy and fast mechanical correction (shimming)
- •Tolerance: $\Delta B/B < 10^{-3} @ 13 \text{ mm}$

Integrated field homogeneity for 2 modules (Stretched-wire measurement)

ESRF

Thermal stability

- •Dominated by PM material temperature coefficient
- •Can be compensated by passive FeNi shunts
 - The FeNi shunts are saturated
 - The saturated magnetization is temperature dependant

	Material	dB/dT	
<	Sm ₂ Co ₁₇	- 3 10-4	
	$Nd_2Fe_{14}B$	- 10 ⁻³	

Long term stability

- •Small demagnetization vs. time due to thermal excitation
- •Can be stabilized before installation by thermal process

PM magnetization vs. time

Radiation damage

- •Experiences with in-vacuum undulators
- •Sm₂Co₁₇ material has the highest resistance to radiation damage
- •Resistance to radiation damage governed by coercivity

[Chavanne, IPAC14]

ERRORS AND TOLERANCES

ESRF

ERRORS AND TOLERANCES

Tolerances computations

- •Large number of samples with pole profile errors and pole location errors
- •Field quality computations (multipoles)
- •Standard deviations of multipoles for different mechanical tolerances
- •Lifetime and dynamic acceptance computations [Liuzzo, IPAC 2015]

Impact of quadrupole tolerances on electron beam lifetime and dynamic aperture (S. Liuzzo)

Global tolerance (Shape +Assembly)	Lifetime	Dynamic aperture
[mm]	[h]	[mm]
± 0.020	22.5 ± 1.9	8.6 ± 0.8
± 0.040	22.3 ± 2.2	8.1 ± 0.5

ERRORS AND TOLERANCES

Tolerances computations

- •Large number of samples with pole profile errors and pole location errors
- •Field quality computations (multipoles)
- •Standard deviations of multipoles for different mechanical tolerances
- •Lifetime and dynamic acceptance computations [Liuzzo, IPAC 2015]

Global tolerances (including pole shapes & locations)
± 0.040 mm for most of the magnets
± 0.050 mm for dipole-quadrupoles (long magnets)

STRETCHED WIRE MAGNETIC MEASUREMENT BENCH

Multipole strength

- Linear and circular measurements
 Field quality
- Circular measurements
- Multipole analysis
- < 1 "unit" (10⁻⁴ of main multipole) accuracy
- Analysis of complex wire trajectories is possible
- Calibration bench being manufactured

Alignment & fiducialization

•Error budget $\sigma_x \approx \sigma_y \approx \sigma_z \approx 28 \ \mu m$

(assuming σ = 20 μ m for laser tracker)

The European Synchrotron

STRETCHED WIRE MAGNETIC MEASUREMENT BENCH

Calibration bench

- Easy to install and to transport
- Fast calibration
- Based on 3 interferometers
- Measurements of scale errors
- Measurement of stage angles
- Implementation of correction tables
- Position errors ~0.001 mm after calibration

MEASUREMENT METHODS – MULTIPOLES

Multipole measurements

 $\mathbf{B}_{\mathrm{MEAS}}=\mathbf{MC}$

where **C** are the multipoles and $M_{mn} = f(z_m, \theta_m, n)$

→ Matrix inversion

Advantages

•Flexibility

Suitable for arbitrary wire trajectory
Correction of wire position errors
Cancellation of arbitrary multipoles

(a): Single radius circular measurement
(good repeatability).
(b): Multiple radii circular measurements
(improved accuracy).
(c): Compensation of the quadrupole term.

MEASUREMENT METHODS – DQ MAGNETS

DQ Stretched wire measurements

Axis obtained from straight measurement

SWM to be used for

•Fiducialization

•Calibration of the bending angle

•Field quality control

MEASUREMENT METHODS – DQ MAGNETS

First approximation

- Higher order multipoles neglected
- Same gradient for curved and straight integrated field
- Transverse offset ~ sag / 3

(Results from [A. Jain, DLSR 2014])

Simulation results for DQ1

•
$$(G_C - G_S)/G_C = 6 \ 10^{-4}$$

• $\Delta r - sag/3 = 3 \ \mu m$

What about higher order terms?

The European Synchrotron

MEASUREMENT METHODS – DQ MAGNETS

Effect of higher order multipoles

$$I_{s}(z) = I_{2} \sum_{n=1}^{N} (b_{n} + ia_{n}) \left(\frac{z}{\rho}\right)^{n-1} = B_{s}L$$

Integral along a curved path, series development, ...

$$I_{c}(z) \approx I_{2} \sum_{n=1}^{N} (\beta_{n} + i\alpha_{n}) \left(\frac{z}{\rho}\right)^{n-1}$$

with $(\beta_{1} + i\alpha_{1}, L, \beta_{N} + i\alpha_{N})^{T} \approx \mathbf{A} (b_{1} + i\alpha_{1}, L, b_{N} + i\alpha_{N})^{T}$

and
$$A_{mn} = \frac{(n-1)!}{(m-1)!(n-m)!(2(n-m)+1)8^{n-m}} \left(\frac{L}{R_0\rho}\right)^{n-m}$$

With some limits: I_s is analytic and I_c is not.

MEASUREMENT METHODS – DQ MAGNETS

n	Curved multipoles	Straight multipoles	Straight multipoles + correction
1	21792.0	20006.2	21792.9
2	10000	9995.3	10000.5
3	17.03	13.73	14.51
4	-4.22	4.39	1.75
5	5.93	-7.99	-4.03
6	19.79	-0.99	0.95

MEASUREMENT METHODS – DQ MAGNETS

Correlation coefficient between curved and straight measurements

→ Stretched wire measurements are good indicators for field quality

CONCLUSION

ESRF – EBS

- •6 GeV synchrotron light source with 135 pm rad horizontal emittance
- Installation in 2019
- •More than 1000 magnets, procurement started

Magnet design

- •New single-sided dipole-quadrupole concept (DQ)
- •High gradient (90 T/m) quadrupole, prototype measured
- •Permanent magnet dipoles with longitudinal gradient (DL)

Magnetic measurements

- •Stretched wire benches developed in house
- •Suitable for strength meas., field quality and alignment (including DLs and DQs)

MANY THANKS FOR YOUR ATTENTION

