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§ History of biomagnetism at PTB Berlin:
§ 1980 Berlin magnetically shielded room (BMSR)

§ 1991: 37-SQUID Multichannel System

§ 1994: 83-SQUID Multichannel System

§ 2000  Berlin magnetically shielded room (BMSR-2)

§ 2003: 304-SQUID Vector magnetometer system

Introduction 
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§ Main applications for the “old” 304 SQUID
vectormagnetometer:
§ Magnetoencephalography

§ Material properties characterisation
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This presentation gives an overview on the development of a new SQUID magnetometer system intended for high-precision in biomagnetic measurements and nuclear spin precession experiments. The following slides are a collection of several internal and external talks. 



Motivation 
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§ New applications for the “new”
126 SQUID vector magnetometer:
§ Ultra-low-field Nuclear Magnetic Resonance

§ Quantitative imaging of magnetic nanoparticles via
magnetorelaxometry

§ Ultra-sensitive spin precession measurements for
determination of fundamental constants of nature
such as the electric dipole moments of 129Xe
nucleus

304 

126 
 Key features of the new system: 
§ A scalable and modular system design

§ Vector magnetometer with different field sensitivities

§ Robust against pulsed magnetic fields up to 50 mT
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Module and System Design – Overview 

§ Top plane:
1 x-y-z triplet d=17.1 mm
1 hexagon  d=74.5 mm

§ Bottom plane:
7 z-loop d=17.1 mm
1 hexagon
3 x-y duplet d=17.1 mm

§ System:
z-loop’s hexagonal grid
x-y duplet hexagonal
grid rotated by 10.89°

§ SQUID capsule:
niobium shield d=5 mm
detachable contact for
the flux antenna
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bottom small z-loops 

bottom large z-loop  

top small x,y,z-loops 

bottom small x-loop 
bottom small y-loop 

Materials: 
• Magnetometer coils:
Niobium wire d=100 µm

• Support structure: fiber
 reinforced plastic (G10) 

SQUID chip 

niobium foil for super- 
conducting wire bonds 

detachable contact for 
the pick-up coil 

niobium shield d=5mm 

SQUID bias pins 
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Module and System Design – Details 
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The Magnetometer 
control line 
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Input inductance 150 nH 400 nH 

Input coupling 2.5 nH 4.1 nH 

Current limiter  Ioff=20 µA,   Ion=1 µA 

Flux antenna r=8.5×10-3 m raq=37.3×10-3 m 
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Field Distortion Due to Niobium Shields 
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Field Distortion Due to Niobium Shields 
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→ The distortion of one module is one order of magnitude smaller 

z = -175 mm 
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Noise Performance of the Prototype 

Æ17.1mm loops: 1.28 fT/√Hz 
Æ74.5mm  loop:  0.56 fT/√Hz 
→ dominated by Dewar noise 

Æ17.1mm loop: 0.52 fT/√Hz 
→ intrinsic SQUID noise 
Æ74.5mm  loop: 0.16 fT/√Hz 
→ dominated by ambient noise 
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Dotted lines: intrinsic SQUID noise 
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Magnetoencephalography 

m e d i a n 
n e r v e 

s e n s o r y 
c o r t e x 

s t i m u l a t o r 
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In order to demonstrate the suitability of the new system, two proof experiments were carried out.
At first, magnetoencephalography with somatosensory evoked brain activity. The experimental setup is shown schematically.



Magnetoencephalography 

N20 

s-band 
450-750 Hz 

k-band 
850-1200 Hz 

§ Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like
human somatosensory  evoked responses at 1 kHz (T. Fedele et al. Physiol. Meas. 2015)

12 000 averages 
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Magnetoencephalography  

• electric stimulation at median nerve at t=0 s
• N20 visible at t»20 ms after stimulation
• 16200 averages

Somatosensory evoked brain activity, Prototype module: 
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Magnetoencephalography  

• electric stimulation at median nerve at t=0 s
• N20 visible at t»20 ms after stimulation
• 16200 averages
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Somatosensory evoked brain activity, Prototype module: 

s-range (450-750 Hz) 
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Magnetoencephalography  

• electric stimulation at median nerve at t=0 s
• N20 visible at t»20 ms after stimulation
• 16200 averages
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k-range (850-1200 Hz) 
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Bpol 
To boost magnetisation of sample use prepolarisation, usually mT-range. 

Bdet 
Expose sample to 
detection field, 
ususally µT-range. 

SQUID-Sensor 

Basics ULF nuclear magnetic resonance 

x 

z 

y 

t 

Mz

During polarisation 
magnetisation Mz 
grows with T1. 
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Bdet 
Expose sample to 
detection field, 
ususally µT-range. 

SQUID-Sensor 

Basics ULF nuclear magnetic resonance 

x 
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y 
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Bz at SQUID 

During detection 
magnetisation M 
precesses around Bdet
with Larmor frequency 
w=gB and decays  
with T2

*.  

T2
* describes 

dephasing of the M 
(spins). 
intrinsic + instrumental 
contributions. 
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Nuclear magnetic resonance of protons 

Experimental setup: Sample inside polarising coil 

Detection field coil 
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• baseline correction,
• high-pass filter (f0=60Hz)

Sample: distilled water 
detection field:  2.56 µT  
Polarization field:  35 mT (centre sample) 
Polarization time: 5 s 
SQUID reset time : 50 µs 

Raw B-field data Filtered FID 
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Nuclear magnetic resonance of protons 

Experimental setup: Sample inside polarising coil 

Detection field coil 

Sample:    distilled water 
detection field:  2.56 µT  
Polarization field:  35 mT (centre sample) 
Polarization time: 5 s 
SQUID reset time : 50 µs 

Amplitude spectra with the respective fits 

Points are data 
Fit: Lorentzian to data real and imaginary parts 
® Resonance frequency: 108.97 Hz 
® T2* (for bottom z-magnetometer):  1.75 s 

Parameters are in accordance with 
expected values  
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Summary 
• 18-channel SQUID magnetometer module was
designed and constructed

• Different coil sizes allow maximum SNRs for different
source depths and configurations

• The designed module forms the basis for a scalable
multi-module system (we plan a 126 channels configuration)

• Magnetic simulations of the magnetic distortions of
the niobium shields were estimated and geometry of
the shields optimised

• Sensitive MEG and pulsed ULF NMR experiments were performed

• Ultra-low noise performance enabled multi-channel detection of high- 
  frequency components at around 1 kHz of somatosensory evoked activity 
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