

High-precision pulse-driven AC Josephson voltage standard up to 1 V at PTB

O. F. Kieler

- Physikalisch-Technische Bundesanstalt PTB, Braunschweig, Germany -

QM 2016 - 5th International Conference on Quantum Metrology

May 11-13, 2016

Poznan, POLAND

This work was partly carried out with funding by the European Union within the EMRP JRP SIB59 Q-WAVE. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

1. Principle PJVS and JAWS

2.1 V JAWS @ PTB

- a) design
- **b)** fabrication
- c) setup
- d) overview : features

3. Precision of JAWS

- a) comparison JAWS vs. JAWS
- b) comparison JAWS vs. QVM

4. Summary

Principle PJVS and JAWS 1 V JAWS @ PTB

- a) design
- **b)** fabrication
- c) setup
- d) overview : features
- **3. Precision of JAWS**
 - a) comparison JAWS vs. JAWS
 - b) comparison JAWS vs. QVM
- 4. Summary

20 V : 139 264 double-stacked junctions

idea and first realization : S.P. Benz and C.A. Hamilton, Appl. Phys. Lett. 68 (1996) 3171

a current pulse (pulse repetition frequency f_p) transfers *N* flux-quanta $\Phi_0 = h/2e$ through a Josephson junction (number of junctions *M*).

pulse repet. freq. $f_p = const.$

Josephson-equation :

$$V_{DC} = M \cdot N \cdot \Phi_0 \cdot f_p$$

pulse repet. freq. $f_p \neq const.$

Josephson-equation in pulse-mode :

 $V_{AC}(t) = M \cdot N \cdot \Phi_0 \cdot f_p(t)$

AC-voltage arbitrary waveform

1. Principle PJVS and JAWS 2. 1 V JAWS @ PTB

- a) design
- **b)** fabrication
- c) setup
- d) overview : features
- **3. Precision of JAWS**
 - a) comparison JAWS vs. JAWS
 - b) comparison JAWS vs. QVM
- 4. Summary

LCR-filter : M. Watanabe, et al., *IEEE Trans. Appl. Supercond.* 16, 2006 tapered CPW : P.D. Dresselhaus, et al., *IEEE Trans. Appl. Supercond.* 16, 2006

16

JAWS: major fabrication tools

SNS with NbSi : B. Baek, et al., IEEE Trans. Appl. Supercond. 16, 2006

 j_c and V_c parameter adjustable in a wide range - nearly independent

5. Load : AuPd resistors by lift-off; 6. Pads : remove SiO₂ by wet-etching

5 x deposition, 5 x etching, 5 x e-beam, 1 x lift off, 1 x opt. lithography

fabrication of large arrays with high yield !

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016. Slightly revised and annotated version of a presentation given at the QM 2016 held in Poznań, Poland, May 11 to 13, 1016.

2 JAWS systems operational @ PTB

AC-coupling technique: S. P. Benz, et al., IEEE Trans. Appl. Supercond. 11, 2001

optimized setup: 1V JAWS

JAWS : features

- > spectrally pure waveforms
- > arbitrary waveforms

 Σ

- Iarge frequency bandwidth
- > operation in cryocooler
- high time stability
- high precision
- > 3 JAWS systems @ PTB
- First applications

already achieved !

JAWS : features

- > spectrally pure waveforms
- > arbitrary waveforms
- Iarge frequency bandwidth
- > operation in cryocooler
- high time stability
- high precision
- > 3 JAWS systems @ PTB
- First applications

examples

already achieved !

JAWS : spectrally pure waveforms !

> spectra up to voltages of 279 mV_{pp} with 7 500 junctions with SNR of -123 dBc

31

JAWS : arbitrary waveforms

<u>application :</u> characterization AD-converter (e.g. "single-shot")

JAWS : cryocooler operation

PIB

> spectra up to voltages of $\approx 200 \text{ mV}_{pp}$ with 4 000 junctions

Principle PJVS and JAWS 1 V JAWS @ PTB

- a) design
- **b)** fabrication
- c) setup
- d) overview : features
- **3. Precision of JAWS**
 - a) comparison JAWS vs. JAWS
 - b) comparison JAWS vs. QVM
- 4. Summary

Kieler, et al., IEEE Trans. Appl. Supercond. 23, 2013

cancellation of waveform, when both arrays are switched on

high precision of JAWS !

Kieler, et al., IEEE Trans. Appl. Supercond. 23, 2013

Principle PJVS and JAWS 1 V JAWS @ PTB

- a) design
- **b)** fabrication
- c) setup
- d) overview : features
- **3. Precision of JAWS**
 - a) comparison JAWS vs. JAWS
 - b) comparison JAWS vs. QVM
- 4. Summary

Summary (I)

high-quality AC-waveforms

- Nb_xSi_{1-x}- arrays with triple-stacked junctions
- up to 8 arrays in series : 63 000 junctions
- output voltage up to 1 V_{RMS} (2.83 V_{PP})
- high spectral purity : SNR better than -120 dBc
- high frequency range : DC, 2 Hz ... 1 MHz
- high time stability : low noise and no drift
- arbitrary waveforms demonstrated
- JAWS successfully operated in cryocooler

high-quality AC-waveforms

- 3 JAWS systems operational :
 - JAWS 1 : 1 V_{RMS}
 - JAWS 2 : Impedance bridge with 2 x 100 mV_{RMS}
 - JAWS 3 : PJVS + JAWS : 1.18 V with SNR -125 dBc
- First applications : e.g. characterization of HF devices
- direct comparison JAWS JAWS : (1.8 ± 2.0) x 10⁻⁸ @ 1875 Hz
- direct comparison JAWS PJVS : (3.5 ± 11.7) x 10⁻⁹ @ 250 Hz & 1 V_{RMS}
- > next steps :
 - further reduction of crosstalk → new cryoprobe
 - more junctions per chip \rightarrow less than 4 chips for 1 V

ΊК

"voltage source for arbitrary waveforms at the 1 V level with quantum precision and spectral purity"

Acknowledgements

R. Behr

- T. Möhring
- R. Wendisch
- S. Bauer
- L. Palafox
- J. Lee
- J. Kohlmann
- T. Weimann
- K. Störr
- P. Duda
- T. Scheller
- P. Hinze
- B. Egeling
- A. Zorin

- H. Derr
- G. Muchow
- K. Kuhlmann
- R. Judaschke
- B. Brinkmeier (Sympuls, Germany)

This work was partly carried out with funding by the European Union within the EMRP JRP SIB59 Q-WAVE. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016. Slightly revised and annotated version of a presentation given at the QM 2016 held in Poznań, Poland, May 11 to 13, 1016.

Thank you very much for your attention!

