Significant improvement of J_c in small D_s RRP® wires through heat treatment changes and phase control

Using Nausite to our advantage

Charlie Sanabria1, Michael Field2, P. J. Lee1, Hanping Miao2, D. C. Larbalestier1 and Jeffrey Parrell2

1Applied Superconductivity Center, NHMFL, Florida State University, Tallahassee, FL 32310, USA
2Oxford Superconducting Technology
600 Milik Street Carteret, NJ 07008, USA
Outline

The ‘big picture’
- Current RRP® limitations
- Hi-Lumi and FCC demands

Heat Treatment “revelation”
- Ian Pong, et. al. (2013)
- The “Nausite membrane”
- The Good, the Bad

Key Findings
- The 215°C dwell is useless
- Nausite growth is strongly dependent on temperature
- Cu diffusion is weakly dependent on temperature

Conclusion
- Promoting Cu diffusion while inhibiting Nausite growth can increase J_c
- Our new heat treatment improved J_c (16 T) in small D_s wires by 28% (preserving RRR)
There is a dramatic drop in J_c as the subelements get smaller.

LHC requirements

Final Targets for FCC Conductor

A. Ballarino, presented at the FCC week 2016.

Current Hi-Lumi LHC requirements for LARP Quadrupoles

S-HiLumi-doc.40; Rev. No.: Original Release; Date: 05-May-2015

* Values presented at 16 T (1500 A/mm²)
* Kramer extrapolation to 15 T = 1865 A/mm²
Outline

The ‘big picture’
- Current RRP® limitations
- Hi-Lumi and FCC demands

Heat Treatment “revelation”
- Ian Pong, et. al. (2013)
- The “Nausite membrane”
- The Good, the Bad and the Ugly

Key Findings
- The 215°C dwell is useless
- Nausite growth is strongly dependent on temperature
- Cu diffusion is weakly dependent on temperature

Conclusion
- Promoting Cu diffusion while inhibiting Nausite growth can increase J_c
- Our new heat treatment improved J_c (16 T) in small D_s wires by 28% (preserving RRR)
“There is limited Sn diffusion outwards” during the 400°C dwell – Pong, *et. al.* (2013)

“There is limited Sn diffusion outwards” during the 400°C dwell due to a barrier of the so-called Nausite (Sn-Nb-Cu phase)

“Pores are mostly observed above 415°C in the filamentary region”
The $400^\circ C$ dwell is where all of the interesting kinetics happens

- Quartz tubes
- Argon gas
- ~ 13 cm long pieces

This talk will focus on the fact that at $\sim 400^\circ C$:

- A Nausite ‘membrane’ forms
- Cu diffuses through the Nausite membrane into the core

Three things happen...
The Good, the Bad and the Ugly

Cu diffusion into the core

Nausite growth

Liquefaction of η

Drawings: © Orlando Aquije 2008
atixvector.deviantart.com
The Good, the Bad and the Ugly

The Good: The Cu diffusion (facilitated by the membrane) consumes the low melting point phase \(\eta \).

The Bad: The Nausite membrane grows with time.

The Ugly: Any remaining \(\eta \) will liquefy and produce large amounts of Nausite.

How do we rescue this Nb??

Upon liquefaction...

Sequestered Nb, bound to form disconnected Nb\(_3\)Sn.
Outline

The ‘big picture’
- Current RRP® limitations
- Hi-Lumi and FCC demands

Heat Treatment “revelation”
- Ian Pong, *et. al.* (2013)
- The “Nausite membrane”
- The Good, the Bad and the Ugly

Key Findings
- The 215°C dwell is useless
- Nausite growth is strongly dependent on temperature
- Cu diffusion is weakly dependent on temperature

Conclusion
- Promoting Cu diffusion while inhibiting Nausite growth can increase J_c
- Our new heat treatment improved $J_c (16\, T)$ in small D_s wires by 28% (preserving RRR)
The 215°C dwell is useless, and it can be skipped without affecting strand properties.

There is virtually no degradation of properties when skipping 215°C.

\[\Delta H_k \approx 0.06 \, \text{T} \]
\[\Delta J_c (12 \, \text{T}) \approx -38 \, \text{A/mm}^2 \]
\[\Delta n\text{-value} \approx 0.04 \]

(when skipping 215°C dwell)
Nausite growth is strongly dependent on temperature.

Power law growth:

\[x(T, t) = kt^{0.27} \]

Arrhenius:

\[k = k^0 e^{-\frac{Q_g}{RT}} \]

Activation energy:

\[Q_g = -98.274 \text{ kJ/mol} \]

Reducing temperature seems to be beneficial if we are to prevent Nausite formation (as a layer)—“the bad”

Predicted values

8 hours 16 hours 24 hours 32 hours 40 hours 48 hours
Cu diffusion to the core is weakly dependent on temperature.

- 2.4 ng after 8 hours (at 398°C)
- 2.8 ng after 48 hours (at 398°C)

Graph showing Cu mass in core per meter of wire (ng) vs. Dwell Time (h) at different temperatures:
- 398°C
- 390°C
- 380°C
- 370°C
Longer heat treatments at lower temperatures draw more Cu in and inhibit Nausite Growth

“The Good” is not affected by lower temperatures

“The Bad” is slowed down significantly by lower temperatures

All we have to do to take care of “The Ugly” is let this run for a long time...

...so more Cu gets drawn in
Outline

The ‘big picture’
- Current RRP® limitations
- Hi-Lumi and FCC demands

Heat Treatment “revelation”
- Ian Pong, *et. al.* (2013)
- The “Nausite membrane”
- The Good, the Bad and the Ugly

Key Findings
- The 200°C dwell is useless
- Nausite growth is strongly dependent on temperature
- Cu diffusion is weakly dependent on temperature

Conclusion
- Promoting Cu diffusion while inhibiting Nausite growth can increase J_c
- Our new heat treatment improved J_c (16 T) in small D_s wires by 28% (preserving RRR)
Promoting Cu diffusion while inhibiting Nausite growth can increase J_c

- **Standard Heat Treatment**
 - Roughly the same length
 - Same A15 reaction T
 - RRR was not affected

- **1st attempt to control Nausite**
 - Roughly the same length

Graphs showing J_c vs. $B(T)$ for different thicknesses (0.6 mm, 0.7 mm, 0.85 mm) and indicating a 28% increase.
Back to the (sobering) ‘big picture’

There are two kinds of heat treatments in this world my friends, those who use Nausite to their advantage, and those who waste Nb.

Final Targets for FCC Conductor*

A. Ballarino, presented at the FCC week 2016.

 Plenty of work ahead of us!

Current Hi-Lumi LHC requirements

Kramer extrapolation to 15 T = 1865 A/mm²

1st attempt to control Nausite

The Good

* Values presented at 16 T (1500 A/mm²)
Kramer extrapolation to 15 T = 1865 A/mm²

Thank you

Special thanks to **Arup Ghosh** (BNK), **Ian Pong** (LBNL), **Dan Dietderich** (LBNL), and **Lance Cooley** (Fermi Lab) for fruitful discussions.

This work was funded by the **Department of Energy** under grant: DE-FOA-0001604

The National High Magnetic Field Laboratory where the experiments were performed is supported by the **National Science Foundation** Cooperative Agreement DMR-1157490 and by the State of Florida.

Some of the wires used in this study were made under the **US Conductor Development Program**.