1st Performance Test of the 25 T Cryogen-free Superconducting Magnet

Satoshi Awaji, Hidetoshi Oguro, Kazuo Watanabe
HFLSM, IMR, Tohoku University

Hiroshi Miyazaki, Satoshi Hanai, Taizo Tosaka, Shigeru Ioka
Toshiba Corporation
Collaborators

HFLSM, IMR, Tohoku Univ.
Toshiba (Magnet system)

Fujikura (Gd123 tapes)
Furukawa (LTS cables)

NIMS (R&D)

LNCMI-CNRS (R&D)

H. Oguro and K. Watanabe, Y. Tsuchiya
H. Miyazaki, M. Takahashi, Y. Tosaka,
K. Tasaki, S. Hanai, S. Ioka

S. Fujita, M. Daibo, H. Iijima
M. Sugimoto, H. Tsubouchi

G. Nishijima, S. Matsumoto, S. Nimori,
H. Kumakura, T. Shimizu

Y. Miyoshi, X. Chaud, F. Debray
25T Cryogen-free Superconducting Magnet (25T-CSM)

56 GdBCO single pancakes
(11.5T@144A, 407MPa) /
38 Bi2223 double pancakes
(11.5T@203A, 323MPa)

4LPo1D-01

3 CuNb/Nb3Sn Rutherford solenoid
(14T@854A, 251MPa)

3 NbTi Rutherford solenoid

Cooling system 3LPo2B-04

Conduction cooling using He circulation
Shield: 2 x 1 stg GM cryocooler
HTS: 2 x 4K-GM cryocooler
(3W@4.2K, 10W@8K)
LTS: 2 x GM/JT cryocooler (8.6W@4.3K)
Design of a 25T-CSM (Final)

<table>
<thead>
<tr>
<th></th>
<th>Gd123</th>
<th>Nb3Sn</th>
<th>Nb3Sn</th>
<th>Nb3Sn</th>
<th>NbTi</th>
<th>NbTi</th>
<th>NbTi</th>
<th>Bi2223</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>A</td>
<td>144</td>
<td></td>
<td></td>
<td>854</td>
<td></td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>Inner radius</td>
<td>mm</td>
<td>52</td>
<td>149.5</td>
<td>185.3</td>
<td>228.6</td>
<td>271.7</td>
<td>301.6</td>
<td>312.9</td>
</tr>
<tr>
<td>Outer radius</td>
<td>mm</td>
<td>131.42</td>
<td>182.4</td>
<td>226.4</td>
<td>270.1</td>
<td>301.6</td>
<td>311.9</td>
<td>356.3</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>336</td>
<td>542.0</td>
<td>630.3</td>
<td>680.4</td>
<td>629.5</td>
<td>629.5</td>
<td>629.5</td>
</tr>
<tr>
<td>Space current density</td>
<td>A/mm²</td>
<td>129.8</td>
<td>67.6</td>
<td>67.4</td>
<td>66.7</td>
<td>68.9</td>
<td>84.7</td>
<td>86.7</td>
</tr>
<tr>
<td>No of turns/layer</td>
<td>-</td>
<td>56</td>
<td>80</td>
<td>93</td>
<td>93</td>
<td>95</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>No of layer</td>
<td>-</td>
<td>435</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>16</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>Total No of turns</td>
<td>-</td>
<td>24360</td>
<td>1438</td>
<td>2043</td>
<td>2043</td>
<td>1518</td>
<td>641</td>
<td>2779</td>
</tr>
<tr>
<td>Bmax</td>
<td>T</td>
<td>25.6</td>
<td>13.8</td>
<td>11.3</td>
<td>8.4</td>
<td>6.8</td>
<td>6.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Br</td>
<td>T</td>
<td>4.66</td>
<td>4.65</td>
<td>5.58</td>
<td>5.71</td>
<td>5.71</td>
<td>5.71</td>
<td>5.52</td>
</tr>
<tr>
<td>B0</td>
<td>T</td>
<td>11.5</td>
<td>2.43</td>
<td>2.91</td>
<td>2.73</td>
<td>1.91</td>
<td>0.78</td>
<td>3.25</td>
</tr>
<tr>
<td>Width of conductor</td>
<td>mm</td>
<td>5.00</td>
<td>6.45</td>
<td>6.45</td>
<td>6.45</td>
<td>6.30</td>
<td>5.57</td>
<td>5.57</td>
</tr>
<tr>
<td>Thickness of conductor</td>
<td>mm</td>
<td>0.13</td>
<td>1.53</td>
<td>1.53</td>
<td>1.53</td>
<td>1.50</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>Thickness of layer insulation</td>
<td>mm</td>
<td>0.055</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.07</td>
</tr>
<tr>
<td>Jcon</td>
<td>A/mm²</td>
<td>129.8</td>
<td>106.2</td>
<td>106.2</td>
<td>106.2</td>
<td>106.2</td>
<td>138.6</td>
<td>138.6</td>
</tr>
<tr>
<td>Tcs</td>
<td>K</td>
<td>6.69</td>
<td>8.37</td>
<td>9.94</td>
<td></td>
<td>5.98</td>
<td>6.20</td>
<td>6.39</td>
</tr>
<tr>
<td>Averaged compressive stress</td>
<td>MPa</td>
<td>-32</td>
<td>-38</td>
<td>-50</td>
<td>-48</td>
<td>-47</td>
<td>-55</td>
<td>-92</td>
</tr>
<tr>
<td>Hoop Stress BJR</td>
<td>MPa</td>
<td>407</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hoop stress Wilson</td>
<td>MPa</td>
<td>–</td>
<td>252</td>
<td>244</td>
<td>202</td>
<td>138</td>
<td>113</td>
<td>52</td>
</tr>
<tr>
<td>IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mechanical design of the LTS coils
- strand in Rutherford cable-

CuNb/Nb$_3$Sn Rutherford cable

Axial stress
- 252 MPa

Transverse stress
- 50 MPa

Critical current (A)

- 12T
- 14.5T

200
150
100
50
0

4.2K, 100 μV/m

Extracted strand from Rutherford cable

Transverse compression stress (MPa)

14.5T, 4.2K, 100 μV/m

ΔI_c = 4% @ 60 MPa

n-value

0 20 40 60 80 100

0 50 100 150 200 250

This invited oral presentation 1LOr2A-02 was given at ASC 2016. Submitted to IEEE Trans. Appl. Supercond. for possible publication.
Design of LTS coils

CuNb/Nb$_3$Sn Rutherford cable solenoids (R&W)

Table 1. Specification of NbTi and Nb$_3$Sn strands.

<table>
<thead>
<tr>
<th>Strand</th>
<th>NbTi-a</th>
<th>NbTi-b</th>
<th>CuNb/Nb$_3$Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand diameter (mm)</td>
<td>0.80</td>
<td>0.70</td>
<td>0.8</td>
</tr>
<tr>
<td>Cu/CuNb/superconductor</td>
<td>1.9/-/1</td>
<td>1.9/-/1</td>
<td>20/35/45</td>
</tr>
<tr>
<td>Filament diameter (µm)</td>
<td>17.9</td>
<td>15.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Number of filaments</td>
<td>690</td>
<td>690</td>
<td>6973</td>
</tr>
<tr>
<td>Barrier material</td>
<td></td>
<td></td>
<td>Ta</td>
</tr>
</tbody>
</table>

Load factor \approx 90% @4.2K

Critical current of the CuNb/Nb$_3$Sn Rutherford cable at 4.2 K and 267 MPa

at 4.2 K and 330 MPa

Load line of the L1 coil

Load line and stress of Gd123

Fujikura Gd123 tape

I_c vs B graph

$B^0.66$

B_z^{max}

B_r^{max}

$B_{//c}$

407 MPa

Fujikura coated conductor
40 μm Cu plated
$T = 77.3$ K, $B = 1$ T

Critical current

n-value

Tensile stress (MPa)
Load lines and stress limit -Bi2223 tapes-
Quench protection

\[I_c(\text{Gd123}) > 200 \ A @20K \]

Induced \(I \) would not become larger than \(I_c @20 \ K \).
Cooling and impregnation of HTS

All turns are separated but the edge part is connected to the cooling plate.

Cooling system

-> Takahashi 3LPo2B-04
Cooling the LTS coil in the 25T-CSM

Cooling modes
mode 1 (300–50 K)
mode 2 (50–20 K)
mode 3 (20–4 K)

Heat load to the GM/JT cryocoolers at 4 K

<table>
<thead>
<tr>
<th>Heat load</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-loss of the LTS coils</td>
</tr>
<tr>
<td>Joule loss of the junctions</td>
</tr>
<tr>
<td>Heat invasion from the support</td>
</tr>
<tr>
<td>Heat invasion from the support of the REBCO coil</td>
</tr>
<tr>
<td>Thermal radiation</td>
</tr>
<tr>
<td>Heat load from the cold stage of the power lead</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Cooling system -> 3LPo2B-04
LTS coil stand-alone test
TEST results of LTS coil

1st run

Shut down test

2nd run

Oguro et al, SuST 29 (2016) 084004
Gd123 insert coil
Gd123 insert stand-alone test

S. Awaji et al., SuST 29 (2016) 05510
25 T-CSM combination test

$B_{\text{cal}} = 24.01 \text{ T} \ (124.6A)$
$(B_{\text{meas}} = 23.61 \text{ T})$

Quench point

$B_{\text{cal}} = 23.94 \text{ T} \ (110A)$
$(B_{\text{meas}} = 23.55 \text{ T})$

Stable Operation!
25 T-CSM combination test (Gd) - IV properties -

0A -> 95A (0.018 A/s (2h mode))
94A -> 125A (0.010 A/s)

- 10 average
○ Average at constant I

$B_{LTS} = 14$ T (855 A)

Sweep at $B_{LTS} = 14$ T
Sweep at $B_{LTS} = 0$ T
○ Constant-I

Balance V (mV)

I_{HTS} (A)
Quench was detected due to the thermal runaway of HTS coil.

650 V x 2 at HTS coil was generated after the quench.

Drop of I_{HTS} at 6 s past after the quench protection mode.

Vacuum was deteriorated rapidly at the same time.

The quench protection seems to work well at least for 6 s after the quench?
Comparison to quench simulation

![Graph showing comparison of quench simulation](attachment:image.png)

- I_{HTS}
- $I_{LTS-middle}/10$
- $I_{Nb3Sn}/10$
- $I_{NbTi}/10$
- $I_{LTS-PS}/10$

- Quench Detector (HTS)
- Quench Detector (Nb_3Sn)

Graph Details:
- L1, L4a, L4b, L5 quench
- Elapsed time (s)
- Current (A)

Circuit Diagram:
- 240A/8V
- 5.5Ω (Bi)
- 11Ω (Gd)
- H1
- 0.795Ω
- 10kΩ
- 1Ω
- L1, L2, L3, L4, L5
Bi2223 insert coil
Bi2223 insert stand-alone test

\[
B_{\text{cal}} = 11.60 \text{T} \\
B_{\text{meas}} = 11.48 \text{T} \\
I_{\text{op}} = 204.8 \text{A}
\]

-> Hanai et al, 4LPo1D-01
25T-CSM-Bi combination test

$24.6 \, T$

$I_{HTS}=187.8A$

$I_{LTS}=854A$
Field hysteresis

Gd123

25T-CSM combination test (Gd123 insert)

Bi2223

25T-CSM combination test (Bi2223 insert)
Field monitor for 25T-CSM

Field monitor coil

$\phi 89$

$R (\Omega)$ vs. $B (T)$ for 25T-CSM combination test (Bi2223 insert)
25T-CSM at HFLSM Annex building

Experimental preparation room

Measuring equipment storage

Machinery

25T-CSM

Hall

Front door

Closet

WC

Sink

WC
J_c measurement using 25T-CSM

![Graphs and Equipment Image]

No time limit! Small noise level!
Summary

• 25T-CSM was installed and tested at the HFLSM, IMR, Tohoku University.
 - CuNb/Nb₃Sn, NbTi Rutherford cable coils (LTS coils)
 • 1 hour ramping up to 14 T of the LTS outsert coil was confirmed without training quench.
 • High stress operation in 251 MPa was succeeded.
 - Gd123 insert coil (HTS-Gd coils)
 • 1 hour charging/discharging up to 10.5 T was confirmed by the single mode test.
 • 24.01T was generated but a thermal runaway of the HTS coil happened.
 - Bi2223 insert coil (HTS-Bi coils)
 • 1 hour charging/discharging up to 11.5 T was confirmed by the single mode test.
 • 24.6T was achieved successfully within one hour charging time by the simultaneous ramping of both HTS and LTS coils.