

ASC2016, Sep. 4-9, 2016, Denver, CO, USA

1st Performance Test of the 25 T Cryogen-free Superconducting Magnet

<u>Satoshi Awaji</u>, Hidetoshi Oguro, Kazuo Watanabe <u>HFL</u>SM, IMR, Tohoku University

Hiroshi Miyazaki, Satoshi Hanai, Taizo Tosaka, Shigeru Ioka Toshiba Corporation

Collaborators

HFLSM, IMR, Tohoku Univ. Toshiba (Magnet system)

Fujikura (Gd123 tapes) Furukawa (LTS cables)

NIMS(R&D)

LNCMI-CNRS (R&D)

H. Oguro and K. Watanabe, Y. Tsuchiya
H. Miyazaki, M. Takahashi, Y. Tosaka,
K. Tasaki, S. Hanai, S. Ioka
S. Fujita, M. Daibo, H. Iijima
M. Sugimoto, H. Tsubouchi

G. Nishijima, S. Matsumoto, S. Nimori,
H. Kumakura, T. Shimizu
Y. Miyoshi, X. Chaud, F. Debray

25T Cryogen-free Superconducting Magnet (25T-CSM)

Design of a 25T-CSM (Final)

		Gd123	Nb3Sn	Nb3Sn	Nb3Sn	NbTi	NbTi	NbTi	Bi2223
Current	A	144	854						203
Inner radius	mm	52	149.5	185.3	228.6	271.7	301.6	312.9	48.0
Outer radius	mm	131.42	182.4	226.4	270.1	301.6	311.9	356.3	138.9
Height	mm	336	542.0	630.3	680.4	629.5	629.5	629.5	389.1
Space current density	A/mm ²	129.8	67.6	67.4	66.7	68.9	84.7	86.7	110
No of turns/layer	-	56	80	93	93	95	107	107	76(38DP)
No of layer	-	435	18	22	22	16	6	26	257 (ave.)
Total No of turns	-	24360	1438	2043	2043	1518	641	2779	19532
Bmax	Т	25.6	13.8	11.3	8.4	6.8	6.2	5.9	25.6
Br	Т	4.66	4.65	5.58	5.71	5.71	5.71	5.52	4.14
BO	Т	11.5	2.43	2.91	2.73	1.91	0.78	3.25	11.50
Width of conductor	mm	5.00	6.45	6.45	6.45	6.30	5.57	5.57	4.5
Thickness of conductor	mm	0.13	1.53	1.53	1.53	1.50	1.31	1.31	0.31
Thickness of layer									
insulation	mm	0.055	0.075	0.075	0.075	0.075	0.075	0.075	0.07
Jcon	A/mm ²	129.8	106.2	106.2	106.2	106.2	138.6	138.6	150.4
Tcs	K		6.69	8.37	9.94	5.98	6.20	6.39	
Averaged compressive stress	MPa	-32	-38	-50	-48	-47	-55	-92	-32
Hoop Stress BJR	MPa	407	_	_	_	_	_	-	-
Hoop stress Wilson	MPa	_	252	244	202	138	113	52	323

Mechanical design of the LTS coils – strand in Rutherford cable–

Design of LTS coils

CuNb/Nb₃Sn Rutherford cable solenoids (R&W)

Table 1. Specification of NbTi and Nb₃Sn strands.

Strand	NbTi-a	NbTi-b	CuNb/Nb ₃ Sr
Strand diameter (mm) Cu/CuNb/superconductor Filament diameter (µm) Number of filaments	0.80 1.9/-/1 17.9 690	0.70 1.9/-/1 15.6 690	0.8 20/35/45 3.3 6973
Barrier material	—	—	Та

Load factor ≈ 90% @4.2K

Oguro, SUST 29 (2016) 084004. Sugimoto, IEEE TAS **25** (2015) 6000605.

тоноки

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. This invited oral presentation 1LOr2A-02 was given at ASC 2016. Submitted to *IEEE Trans. Appl. Supercond.* for possible publication.

Load line and stress of Gd123

тоноки

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. This invited oral presentation 1LOr2A-02 was given at ASC 2016. Submitted to *IEEE Trans. Appl. Supercond.* for possible publication.

Load lines and stress limit -Bi2223 tapes-

Quench protection

Cooling the LTS coil in the 25T-CSM 🕻

Cooling modes mode 1 (300–50 K) mode 2 (50–20 K) mode 3 (20–4 K)

	Heat load			
AC-loss of the LTS coils	2.63 W			
Joule loss of the junctions	0.869 W			
Heat invasion from the support	0.189 W			
Heat invasion from the support of the REBCO coil	0.037 W			
Thermal radiation	0.151 W			
Heat load from the cold stage of the power lead	1.70 W			
Total	5.58 W			
Cooling system -> 3LPo2B-04				

LTS coil stand-alone test

Oguro et al, SuST 29 (2016) 084004

Gd123 insert coil

Gd123 insert stand-alone test

25 T-CSM combination test

25 T-CSM combination test (Gd) - IV properties -

V, T, Vacuum profiles after quench

τοнοκι

- Quench was detected due to the thermal runaway of HTS coil.
- 650 V x 2 at HTS coil was generated after the quench.
- Drop of I_{HTS} at 6 s past after the quench protection mode.
- Vacuum was deteriorated rapidly at the same time.
- The quench protection seems to work well al least for 6 s after the quench?

Comparison to quench simulation

Bi2223 insert coil

Bi2223 insert stand-alone test

тоноки

25T-CSM-Bi combination test

Field hysteresis

Field monitor for 25T-CSM

Field monito coil

25T-CSM at HFLSM Annex building

J_{C} measurement using 25T-CSM

Summary

- 25T-CSM was installed and tested at the HFLSM, IMR, Tohoku University.
 - CuNb/Nb₃Sn, NbTi Rutherford cable coils (LTS coils)
 - 1 hour ramping up to 14 T of the LTS outsert coil was confirmed without training quench.
 - High stress operation in 251 MPa was succeeded.
 - Gd123 insert coil (HTS-Gd coils)
 - 1 hour charging/discharging up to 10.5 T was confirmed by the single mode test.
 - 24.01T was generated but a thermal runaway of the HTS coil happened.
 - Bi2223 insert coil (HTS-Bi coils)
 - 1 hour charging/discharging up to 11.5 T was confirmed by the single mode test.
 - 24.6T was achieved successfully within one hour charging time by the simultaneous ramping of both HTS and LTS coils.