

1

Digital Output Data Links from Superconductor Integrated Circuits

Deepnarayan Gupta¹, Saad Sarwana¹, Dmitri Kirichenko¹, Vladimir Dotsenko¹, A. Erik Lehmann¹, Timur V. Filippov¹, Wei Ting², Su-Wei Chang², Prasanna Ravindran², and Joseph Bardin² ¹ Digital-RF Circuits and Systems Division, HYPRES ²Department of Electrical and Computer Engineering, University of Massachusetts, Amherst

Funded in part by ONR Basic Research Grant and Small Business Technology Transfer Programs

Digital Data Link from SCE to Room Temperature 🛞

Faster Datalink – SCE IC to FPGA

Flexible transmission line **Driver on superconductor IC** Converts SFQ pulses to voltage Transfer signal from 4K to 300K SQUID based amplifier stages 10 signal lines per cable assembly 3 - 5mV output amplitude Heat load vs. bandwidth optimized for 10 Gbps >20 Gbps 20 channel amplifier at 300K High-speed FPGA transceivers Custom multistage amplifier design Using Xilinx GT* transceiver family >10 Gbps differential CML output Enables single links up to 32 Gbps >100 GT* available per FPGA chip Xilinx **FPGA Board Custom Interface adapter**

Example Data Link Configurations

120 Gbps Data Transport from 4K to 300 K

Superconductor Output Driver for Digital Output Data Link

Comparison of Superconductor Output Drivers

Output Drivers	Data rate (Gbps)	Swing @50Ω (mVpp)	Power (μW)	FOM (fJ/bit)	Area (μm)²
SQUID-stack "Dodo"	6	5	99.0	16.5	22,800
SQUID-stack "Bluebird"	14	5	134.0	9.6	29,400
SQUID-stack "Ostrich"	30	5	157.6	5.3	63,800
Differential SFQ/DC	40*	1.3	13.4	0.3	12,000

*Projected. Differential SFQ/DC driver with cryogenic SiGe amplifier chain has been tested up to 22 Gbps.

Bluebird is the most used

- Ostrich is faster but takes >2x area and 17% more power
- Dodo was made for lower power for slower data links

SFQ/DC is fast but requires cryogenic amplification

Ostrich Driver tested at 30 Gbps

- Direct measurement of Ostrich SQUID-stack driver at 30 Gbps using fast sampling module (80E09B) on Tektronix sampling oscilloscope
 - Measured without any amplifier in ICE-T insert at 3.7 K

- Direct measurement of Ostrich SQUID-stack driver at 30.48 Gbps using on-chip sampler
 - Measured in He immersion cryoprobe at 4.2 K

Data Link with Ostrich Driver at 16 Gbps

Distribution statement A: Approved for public release; distribution is unlimited. DCN #: 43-4723-18

Electrical Transmission Line (Flexible Ribbon Cable) Development for Digital Output Data Link

Transmission Line

Transmission Line	3-dB BW (GHz)	Data Rate (Gbps)	4 K Heat load (μW)	FOM (fJ/bit)
Ag-coated BeCu Coax	30	42.9	2473	57.7
Stripline Version 1	1.5	2.1	440	205.3
Stripline Version 2	4	5.7	740	129.5
Stripline Version 3	7	10.0	1118	111.8

Semiconductor Interface Amplifier for Digital Output Data Link

Cryogenic Amplification

- Cryogenic amplifier derived by cooling part of the roomtemperature amplifier gain
 - Amplifier's gain and bandwidth improve at lower temperature

HTHT Data Link with SiGe Amplifiers

- Concept: Distribute amplification (and corresponding power consumption) over the 4–300 K temperature range
 - Heterogeneous Technology: Nb JJs, SiGe HBT and Si CMOS
- **Collaboration with UMass Amherst (Prof. Bardin)**
 - > Approach-1: Active Matching Circuit (Gain at 4 K with transistor)
 - Approach-2: Passive Matching Circuit (Loss at 4 K)

- D. Gupta, J. C. Bardin, et al., "Low-Power High-Speed Hybrid Temperature Heterogeneous Technology Digital Data Link," IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 1701806, June 2013
- Prasana Ravindran, Su-Wei Chang, et al., "Poweroptimized Temperature-distributed Digital Data Link," IEEE Trans. Applied Superconductivity, vol. 25, no. 3, June 2015.
- P. Ravindran, Su-Wei Chang, et al., "Energy Efficient Digital Data Link", IEEE Trans. Applied Superconductivity, December 2016

Distribution statement A: Approved for public release; distribution is unlimited. DCN #: 43-4723-18

Cryocooled Test Set-up for HTHT Links

13 Gbps HTHT Link with 2-stage Cryo Amplifier

Distribution statement A: Approved for public release; distribution is unlimited. DCN #: 43-4723-18

18 Gbps HTHT Link with 3-stage Cryo Amplifier

Performance Summary

(\mathcal{H})
S

Example	Data Rate	4 K Power	18 K Power	40 K Power	300 K Power (mW)		
•	(Gb/s)	(mW)	(mW)	(mW)	Amplifier	Discriminator	
RT	18				200		
Cryo-40 + RT	21			7.6	26.4	300	
Cryo-18-40 + RT	30		6.3	6.3		300	
Cryo-4-18-40 +RT	30	0.14	3.3	29.5		300	

Hybrid-temperature Heterogeneous-technology (HTHT) design approach

- Step-1: Cool part of the room-temperature interface amplifier to enhance bandwidth
- Step-2: SiGe custom amplifier chain with ("active match") and without ("passive match") a 4 K stage

FPGA Receivers for Digital Output Data Link

Datalink – Channel Bonding

Introduction

- Required data throughput exceeds single lane, multiple lanes are used
- At high rates propagation delays cause the data to arrive at different times to each receiving lane
- Aligning the data across all lanes at the receiver is needed, a process known as channel bonding

Channel bonding for SFQ

- Encoding schemes like 8b/10b or 64b/66b are difficult to implement in RSFQ and large in size
- Common data source (e.g. PRBS) on all output lanes can be used instead
- Same sequence can be found in each receivers elastic buffer at offset
- Read pointers are adjusted to offset of the same sequence location

A.E. Lehmann, et al., "Embedded RSFQ pseudo-random binary sequence generator for multi-channel high-speed digital data link testing and synchronization," IEEE Trans. Appl. Supercond., vol. 27. no. 4, Art. no. 1301806, June 2017.

Signal Path

Distribution statement A: Approved for public release; distribution is unlimited. DCN #: 43-4723-18

64 Gbps Data Transport: 8 channels × 8 Gbps/ch 🕅

Distribution statement A: Approved for public release; distribution is unlimited. DCN #: 43-4723-18

Eye Diagram: 6.5 Gbps Data Link

Eye after 2 stages of amplification

After two stages of amplification and discrimination to CML logic as interpreted by the FPGA

- 52 GSps data generated on superconductor IC, deserialized by a factor of 8
- Acquired by Xilinx UltraScale FPGA
- Superconductor IC in cryocooled testbed

Example Data Link Configurations

Why we need "SuperCables"

	Data Rate	4K Heat Load (mW)			18K Heat Load (mW)			40K Heat Load (mW)		
Example	(Gb/s)	TL	Amp	Total	TL	Amp	Total	TL	Amp	Total
1	10	1.12	0.134	1.25				13.0		13.0
2	20	1.12	0.158	1.28				13.0	7.6	20.6
3	30	4.74	0.013	4.75	12.8	6.3	19.1	149.0	6.3	155.3
4	30	4.74	0.153	4.89	12.8	3.3	16.1	149.0	29.5	178.5

Metallic transmission lines dominate heat loads

Optical fibers offer little heat load and are immune to EMI
Power for E/O and O/E conversion needs be included calculation

Complete Data Link Figure-of-Merit

Example	Data Rate	4K Heat Load × 500	18K Heat Load ×	40K Heat Load ×	Heat 300K Heat Load (mW)		Total Equivalent Heat Load at 300	FOM (pJ/bit)
	(GD/S)	(mW)	100 (mW)	40 (mW)	Amp	GTY	K (VV)	at 300 K
1	10	626	0	520	200	242	1.346	135
2	20	638	0	824	305	337	1.767	88
3	30	2377	1910	6212	300	452	10.799	360
4	30	2447	1610	7140	300	452	11.497	383

Heat loads at different stages are converted to equivalent room-temperature power consumption representing large cryocoolers

> 4K: 500 W/W, 18 K: 100 W/W, 40 K: 40 W/W

Conclusions

Complete SFQ-to-FPGA data links at 6-10 Gbps/channel now routinely used for superconductor digital circuits

- Single links with no cryogenic amplification work up to 16 Gbps
- Multiple parallel links work up to 8 Gbps/channel
- Transport rate up to 120 Gbps demonstrated, limited by data source on superconductor IC not data link
- Established framework for data link design with examples of 10, 20, and 30 Gbps/channel configurations
 - Superconductor drivers up to 30 Gbps are available
 - FPGA-based receivers up to 30 Gbps are available
 - Coaxial lines support high rates but conduct excessive heat, whereas metallic striplines have attenuation and crosstalk
 - Cryogenic amplification helps increase data rate
 - Current electrical links can support small-scale systems in the shortterm with some refinements in cryopackaging
- Improvement in transmission media (e.g. hybrid E/O, superconductor lines) necessary, especially for larger systems