

Sep. 5, 2024 @ Salt Lake City

Applied Superconductivity Conference 2024 (ASC 2024) 4EOr2A-06

Ultra-low-power, microwave-multiplexed qubit controller using adiabatic quantum-flux-parametron logic

N. Takeuchi¹, Y. Yamae¹, T. Yamashita², T. Yamamoto³, N. Yoshikawa⁴

¹Nat'l Inst. of Advanced Industrial Science and Technology (AIST), Japan; ²Tohoku University, Japan; ³NEC Corporation, Japan; ⁴Yokohama National University, Japan

Superconducting quantum processors (QPs)

Large-scale superconducting QPs under development worldwide

Scalability of superconducting QPs

Current control

Future control

3

Ultra-low-power, cryogenic qubit controller (µwave generator) required to build large-scale QP

Purpose of this study

Energy-efficient supercond. logic: Adiabatic QFP (AQFP)

N. Takeuchi et al., Supercond. Sci. Tech. **26** (2013). C. L. Ayala et al., IEEE J. Solid-State Circ. **56** (2021).

Features for qubit controller

Φı

Φз

Develop ultra-low-power qubit controller using AQFP logic

Microwave-pulse generator using AQFP

AQFP-multiplexed qubit controller (AQFP-mux QC)

N. Takeuchi et al., npj Quantum Inf. 10 (2024).

- ✓ AQFP and microwave engineering combined for high scalability
- ✓ Ultra-low-power qubit control using AQFP (81.8 pW per qubit)
- ✓ Driven by a single coaxial cable owing to microwave multiplexing

Core tech: AQFP mixer

Simulation at 5 GHz

- Switching and mixing of microwave using the nonlinearity of AQFPs
- V_{out} generated by mixing I_{lo} and I_{bb} ; and switched on/off by I_{in} and I_{fix}

AQFP-mux QC

Simulation at 4.5 and 5 GHz

7

 \checkmark Cable # does not increase with qubit # due to μ wave muxing

✓ Parallel qubit control available, unlike TDM

AQFP-mux QC: Power estimation

Circuit spec. @ 5 GHz

ltem	Value		
Max output power	-76.6 dBm		
Max power diss.	81.8 pW per qubit (27% for AQFPs)		
Standby power	2.82 pW per qubit (81% for AQFPs)		
# of multiplexing	~2,000 per 1 GHz for resonators with $Q \sim 10^4$		

- \checkmark Cable # does not increase with qubit # due to μ wave muxing
- ✓ Parallel qubit control available, unlike TDM
- ✓ Extremely low-power; frequency-efficient than FDM (mux #: 32)

Individual power calibration

4.5 GHz: -57 dBm, 5 GHz: -56 dBm

4.5 GHz: -57 dBm, 5 GHz: -59 dBm

9

Each output power can be individually calibrated by microwave tone

AQFP-mux QC chip

Designed an AQFP-mux chip comprising two mixers; Fundamental microwave control tested at 4.2 K

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Experiment @ 4 K: Microwave switching

Each output switched on/off by digital signal (Output power: -82 dBm, on/off ratio: ~40 dB)

Experiment @ 4 K: Individual power calibration

Output power vs f_2 tone

Power of V_{out2} individually calibrated by f_2 tone power, while keeping V_{out1} almost constant

Power at LO and sidebands (1-MHz square pulse added to baseband)

Baseband signal upconverted by AQFP mixer

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Technology	Cryo-CMOS [1]	Cryo-CMOS [2]	SFQ [3]	SFQ [4]	AQFP (this study)
Circuit	Microwave-pulse generator	Microwave DEMUX	Microwave-pulse generator	Pulse-train generator	Microwave-pulse generator
Power dissipation	12 mW/qubit	180 nW/qubit	51.7 μW/qubit	1.6 μW/qubit	81.8 pW/qubit
Op. temperature	3 K	10 mK	3 K ^a	3 K	10 mK ^a
Cable count ^b	N _{qubit} /32	$\log_2(N_{\text{qubit}}) + 1$	N _{qubit}	$N_{ ext{qubit}}$	~ <i>N</i> _{qubit} /4,000
Multiplexing	TDM + FDM	TDM			Microwave muxing
Parallel qubit op.	(✔) ^c		\checkmark	1	\checkmark
X gate ($X_{\pi/2}$)	\checkmark	\checkmark	\checkmark	1	\checkmark
Z gate (T)	\checkmark	\checkmark			
Digital controller	\checkmark				

^aSo far demonstrated at 4.2 K in liquid He ^bCable count between 10-mK and 3-K stages ^cLimited to 2 operations per cable [1] J. P. G. Van Dijk et al., IEEE J. Solid-St. Circ. **55** (2020).

- [2] R. Acharya et al., Nat. Electron. 23 (2023).
- [3] H. Shen et al., Supercond. Sci. Tech. 36 (2023).
- [4] L. Howe et al., PRX Quantum **3** (2022).
- [5] N. Takeuchi et al., TEION KOGAKU 59 (2024).

Conclusion

AQFP-mux QC: Scalable qubit controller for large-scale QPs

- Based on AQFP, an energy-efficient supercond. logic element
- Generates multi-tone microwave pulses by the non-linearity of AQFPs
- Highly scalable
 - Ultra-low-power dissipation: 81.8 pW per qubit
 - A few control lines owing to microwave multiplexing: ~N_{qubit}/4,000
- Individual power calibration by adjusting each tone level
- (Precise pulse shaping, with AQFPs' non-linearity taken into account)
- Proof-of-concept experiments successfully performed at 4.2 K

More details can be found in:

- N. Takeuchi et al., npj Quantum Inf. 10 53 (2024).

Acknowledgements

This study was supported by

- JST FOREST (Grant No. JPMJFR212B)
- JSPS KAKENHI (Grants No. JP19H05614 and No. JP19H05615).
- The authors would like to thank S. Kawabata, K. Inomata, Y.
 Matsuzaki, and Y. Hashimoto for useful discussions, and R. Takano for the preliminary study of pulse shaping.

Pulse shaping

Nonlinearity btw. BB and output

Numerical simulation

17

Precise pulse shaping possible by considering the nonlinearity of AQFP mixer