HTS coils without HTS tapes:
Direct deposition and patterning on wide surfaces

francesco.volpe@renfusion.eu
via alex.usoskin@renfusion.eu

CCA 2023 Workshop, Houston 04-04-2023
A fusion of talents!

10 nationalités

Carlo SBORCHIA
Head of MVC

Victor PROST
Mech. Engineer

Nicolas LOUIS
Mech. Engineer

Francesco VOLPE
Founder, CEO, CTO

Nathaniel BAKER
LIquid Metal
Experimentalist

Achilleas EVANGELIAS
Equilibrium
Physicist

Julían GARCIA
PANIZO
Mech. Engineer

Alexander USOSKIN
Head of HTS

Kien NGUYEN
HTS physicist

Jorge VILHENA
Mech. Engineer

Diego PEREIRA
Computational
scientist

Alejandro RODRIGUEZ
Project Exec. Mgr

Diego CAMMARANO

Simon BELKA

Julie DILAS
Buyer

Reinis

BARANOVSKIS
LQM Pump Specialist

Domenico D’ANDREA
HO Business
development

Valentina GIOVACCHIN
LQM Modeller

Hervé ROUCH
CVD modeler

Eleonora SARTORI
Grant administrator

Vincent NICOLAS
Vacuum & material
technician

Emilie REBREYEND
Executive Assistant

Lorenzo BORTOT
Magnet Engineer

Rattana TANG
Automation Engineer

Confidential, all information reserved to Renaissance Fusion 2023
Fusion Power Plant

\[^6\text{Li} + n \rightarrow ^4\text{He} + T \]

\[^7\text{Li} + n \rightarrow ^4\text{He} + T + n' \]
Deuterium-Tritium Fusion

Deuterium (D)
From water

Tritium (T)
From Lithium

Helium (He)

Neutron (n)

3.5 MeV

14.1 MeV
For D-T, Triple product $nT\tau_E > 3 \cdot 10^{21} \text{m}^{-3}\text{keV s}$

INERTIAL
Compression, e.g. by lasers

- Laser power
- Target nanofabrication
- Uniformity of compression
- Repetition rate

MAGNETO-INERTIAL
Magnets & Compression

- Uniformity of compression
- Compression ratio
- Plasma purity

MAGNETIC
Confinement by strong magnets

- Size of device
- Magnetic field strength
Tokamaks vs. stellarators

TOKAMAK

- Simple to build
- Difficult to operate (pulsed, unstable, subject to “disruptions”, regulatory issues)

STELLARATOR

- Difficult to build
- Simple to operate (steady-state, stable)
...and simplify HTS manufacturing

2 machines instead of 7
7x faster process
Multi-layer

3D \rightarrow two 1D movements

Portable sub-assemblies
(cryostat + vessel + coil-set)

Confidential, all information reserved to Renaissance Fusion 2023
F. Volpe A. Usoskin, CCA 2023 Workshop, Houston 04-04-2023

Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.
Many other applications

MRI

Energy Storage

HTS tapes

Quantum Computing

Energy Storage

Electric Motors & Accelerator's Magnets
Coil Winding Surface (CWS)
Does it really have to be conformal to the plasma boundary?

W7-A: axisymmetric

Early modular designs: axisymmetric

W7-AS: ~ piecewise cylindrical?

W7-X: ~ conformal
HTS cylinders simplify stellarators’ Coil Winding Surface (CWS)

W7-X: ~ conformal CWS
Complex surface
Simple current-pattern

RF: piecewise cylindrical
Simple surface
Complex current-pattern
(but simple for the laser)
A **safer** reactor thanks to liquid metal walls

Increasing jxB and/or v

- Parabolic
- Near-circular
- Circular (full coverage)
Architecture of REBCO coated conductor

<table>
<thead>
<tr>
<th>Layer</th>
<th>Deposition technique</th>
<th>Thickness (±5%)</th>
<th>Max Deposition speed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>Magnetron</td>
<td>80 nm</td>
<td>120 m.h⁻¹</td>
<td>Diffusion barrier to metal ions from C-276</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>Magnetron</td>
<td>7 nm</td>
<td>400 m.h⁻¹</td>
<td>Seed layer for MgO</td>
</tr>
<tr>
<td>MgO</td>
<td>IBAD</td>
<td>10 nm</td>
<td>~14 m.h⁻¹</td>
<td>Template for the epitaxial deposition of REBCO</td>
</tr>
<tr>
<td></td>
<td>MOCVD</td>
<td>20 nm</td>
<td>100 m.h⁻¹</td>
<td></td>
</tr>
<tr>
<td>LMO</td>
<td>MOCVD</td>
<td>30 nm</td>
<td>100 m.h⁻¹</td>
<td>Buffer layer (Lattice match)</td>
</tr>
<tr>
<td>REBCO</td>
<td>MOCVD</td>
<td>2 µm</td>
<td>7.5 m.h⁻¹</td>
<td>HTS layer</td>
</tr>
<tr>
<td>Ag</td>
<td>Magnetron</td>
<td>2 µm</td>
<td>70 m.h⁻¹</td>
<td>Protection layer</td>
</tr>
</tbody>
</table>

Layers not up to scale
State of the art

Fig. 1. Quasi-equilibrium heater 1, 2, 5, 6 with a substrate tape 3 helically wound on the cylindrical tape guide 4.
MOCVD temperature distribution (FEA)
MOCVD machine with QEH reactor for 1 m wide tape
Instead of summary:

- MOCVD with QEH reactor should yield a sufficient surface homogeneity in wide tapes

- It should also exhibit a very high deposition efficiency suppressing material loss down to <20%

- Experimental confirmation of these features is expected in 2023
Backup foils
A clear roadmap to commercial fusion
+exit-point to early revenues

Skyfall III

Chartreuse X

Chartreuse P

Milestone 1 (late 2024)

Milestone 2 (2025 onwards)

Milestone 3 (early 2030’s)

Enable

Integrate

Electrify

Business opportunities
Information for the session discussion: extra-wide tapes

- Gaps in technology: not found
- Conductor specifications – quantitative:
 \[w=1 \text{ m}, \ L = 1000 \text{ m}, \ \text{Ic}(\text{SF}, \ 77\text{K}) \geq 250 \text{ A/cm-width} \text{ (or } 25 \text{ kA/m-width)} \]
- Conductor volume needed – 3 years, 5 years: 10 km / 50 km
- What improvements are needed in conductor – prioritize:
 it will be needed: to provide high Jc homogeneity
- Supply Chain issues: not yet found
- Potential areas of collaboration with other applications, conductor manufacturers:
 possible applications: (see slide 8) energy storage, quantum computing, + electromagnetic shielding, levitation, high field magnets
Tokamaks vs. stellarators

Coils simpler to build
Difficult to operate (pulsed, unstable, subject to “disruptions”, regulatory issues?)

Difficult to build
Simple to operate (steady-state, stable, no need for energy-intensive CD)