

ReBCO coated conductors for Ultra-High-Field NMR magnets

Patrik Vonlanthen on behalf of Bruker's UHF NMR team 26 October 2022

ReBCO coated conductors for Ultra-High-Field NMR magnets

ReBCO coated conductors – enabling technology for 1.x GHz magnets

Bruker's 1.2 GHz HTS-LTS hybrid NMR magnet program

O3 Experience gained with Bruker's 1.2 GHz HTS-LTS hybrid NMR magnet program

Next step: Ascend Evo 1.0 GHz – single-story 1.0 GHz 4K NMR magnet

Requirements to ReBCO coated conductors for UHF NMR applications

ReBCO coated conductors quality assurance and quality control processes

7 1.x GHz HTS-LTS hybrid NMR magnets delivered and ordered

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.

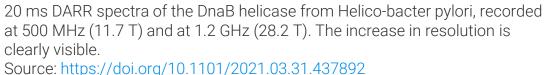
ReBCO coated conductors – enabling technology for 1.x GHz magnets

ASC22 THE APPLIED SUPERCONDUCTIVITY CONFERENCE, 23 - 28 OCTOBER 2022, HONOLULU, HAWAII, USA

ReBCO coated conductors – enabling technology for 1.x GHz NMR magnets

- ReBCO coated conductors, the enabling technology for the new Ultra-High-Field (UHF) magnets
 - Ascend 1.2 GHz (28.2 T, HTS/LTS hybrid, 2 K):
 - highest field commercially available NMR spectrometer.
 - Ascend Evo 1.0 GHz (23.5 T, HTS/LTS hybrid, 4.2 K):
 - GHz-class NMR spectrometer with very compact magnet size.

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.

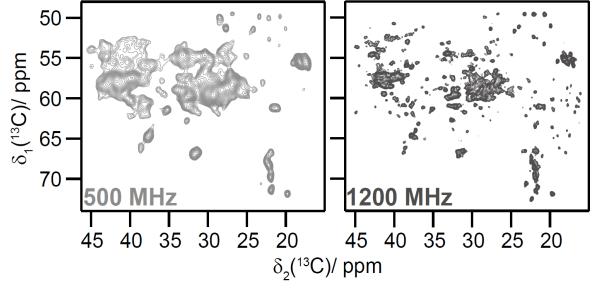


Ascend 1.2 GHz (HTS/LTS hybrid, 2 K)

Ascend Evo 1.0 GHz (HTS/LTS hybrid, 4.2 K)

- magnetic fields beyond the limit of LTS conductors (~1.0 GHz / 23.5 T) with decisive advantages regarding
 - resolution (dispersion), i.e. better peak separation

Higher fields: ReBCO coated conductors enable

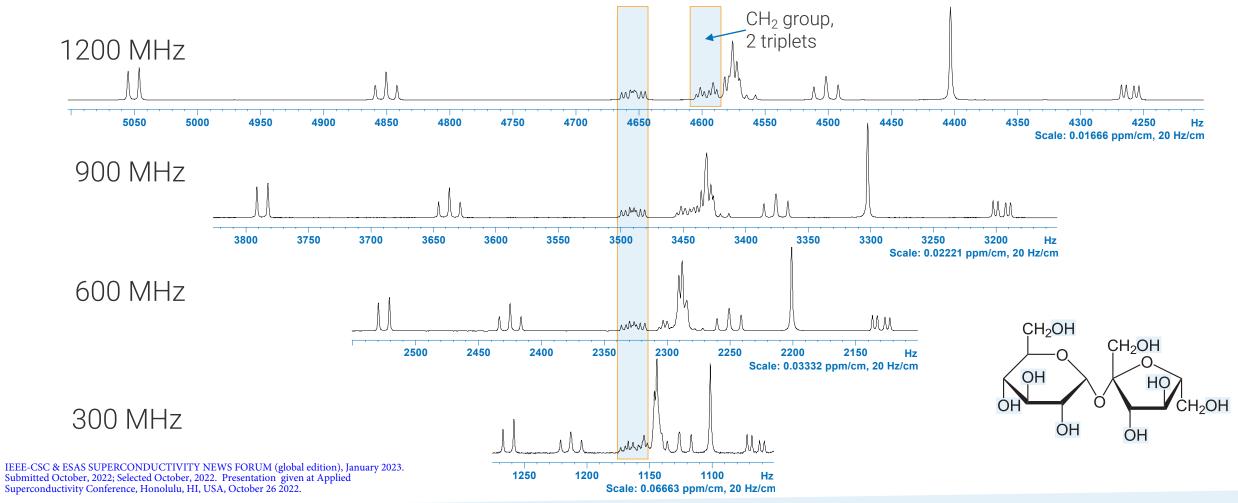

- In higher dimension NMR experiments $\propto B_0^n$
- better signal to noise ratio

© 2022 Bruker

 Bigger energy split between up and down spin states leads to a stronger occupation difference
→ stronger NMR signal from sample

ReBCO coated conductors – enabling technology for 1.x GHz NMR magnets

ASC22 THE APPLIED SUPERCONDUCTIVITY CONFERENCE, 23 – 28 OCTOBER 2022, HONOLULU, HAWAII, USA



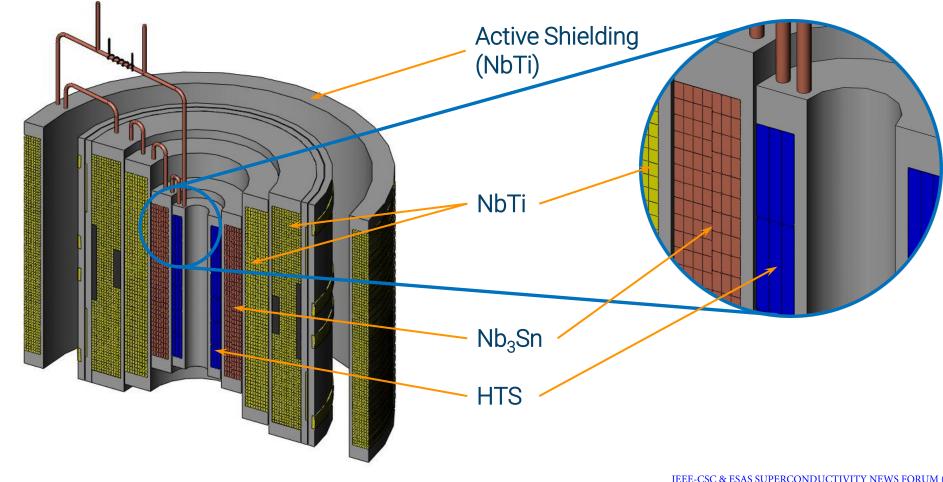
Dispersion at Ultra High Fields

Sugar signals of 2 mM Sucrose in H₂O:D₂O (9:1) illustrate the dispersion gain with increasing field strength

Bruker's 1.2 GHz HTS-LTS hybrid NMR magnet program

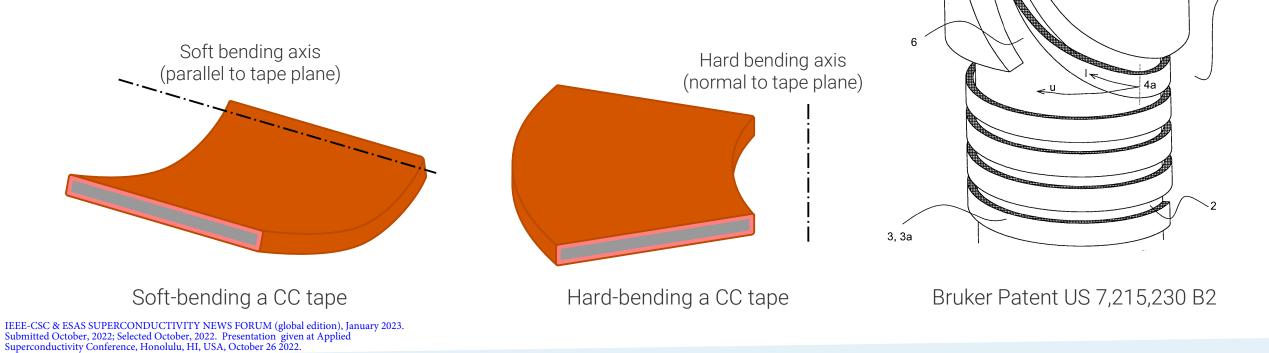
Bruker's 1.2 GHz HTS-LTS hybrid NMR magnet program

- More than 10 years ago: The availability forecast of ReBCO coated conductors lead to the start of UHF HTS-LTS hybrid magnet program.
- Design choices based on test and prototype coils:
 - Layer-wound HTS coils:
 - minimum number of joints;
 - compact and homogeneous winding pack;
 - allows force management for hoop stresses and axial pressures.
 - Insulated ReBCO coated conductors tapes:
 - defined current path during energization and quenches;
 - less time to settle at reached field.



Layer-wound HTS

Design of the UHF HTS-LTS hybrid magnets



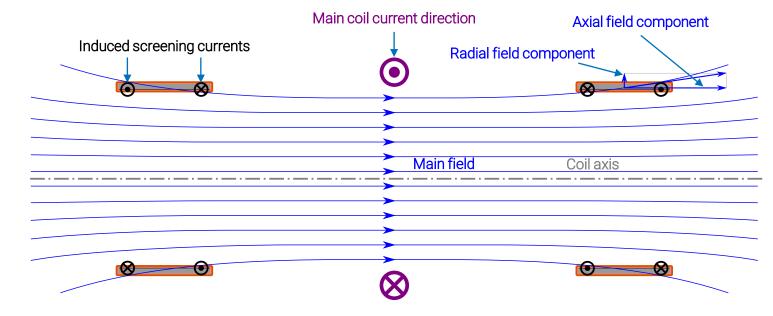
Artistic impression of the 1.2 GHz magnet design

BRUKER

Winding Coated Conductor tapes

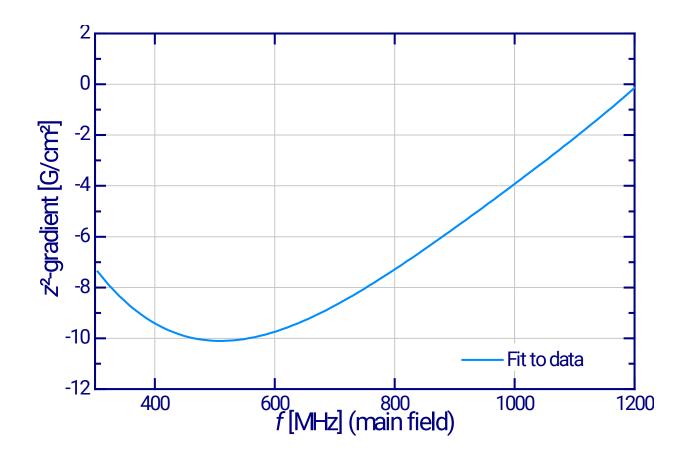
- Attempt to wind with a minimum of hard bending everywhere,
- including the region around the entry to and the exit from the main winding pack.

3. 3b



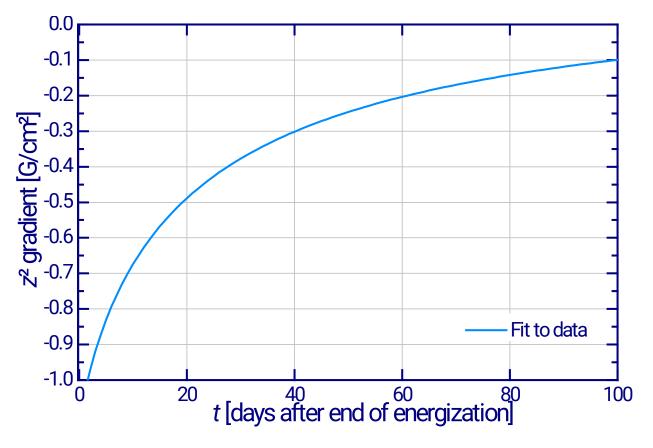
Experience gained so far with Bruker's 1.2 GHz HTS-LTS hybrid NMR magnet program

The homogeneity of HTS-LTS hybrid magnets – screening currents


- HTS screening currents strongly influence the magnet's homogeneity
 - The 4 mm wide tapes offer a big area to induce loop currents, which tend to screen the magnetic field.
 - At the centre of a solenoid the screening currents mainly generate
 - an additional negative field (reducing the total field)
 - a z² gradient.

z² gradient of HTS-LTS hybrid magnets during energization

- The z² gradient varies considerably during magnet energization.
- The goal is to get zero z² gradient at the target field.
 - This effect must be considered in the magnet homogenization.



z² gradient of a 1.2 GHz magnet during energization

Initial drift of the z² gradient of HTS-LTS hybrid magnets

- The relaxation of the screening currents also leads to an initial increase of the z² gradient.
 - This effect must be considered in the homogenization process.
- The z² gradient stabilizes after several weeks.

Initial drift of the z² gradient of a 1.2 GHz magnet after reaching full field

BRUKER

ASC22 THE APPLIED SUPERCONDUCTIVITY CONFERENCE, 23 - 28 OCTOBER 2022, HONOLULU, HAWAII, USA

Next step: Ascend Evo 1.0 GHz – single-story 1.0 GHz 4K NMR magnet

Next step: Ascend Evo 1.0 GHz – single-story 1.0 GHz 4K NMR magnet

- Ascend Evo 1.0 GHz:
 - Taking advantage of the high current density at high magnetic fields of ReBCO coated conductors, a compact HTS/LTS hybrid 1.0 GHz (23.5 T) single-story NMR magnet, operating at 4.2 Kelvin, has been developed.
 - Provides many more structural biology and drug discovery researchers access to the sensitivity and resolution of GHz NMR.

Ascend Evo 1.0 GHz (HTS/LTS hybrid, 4.2 K)

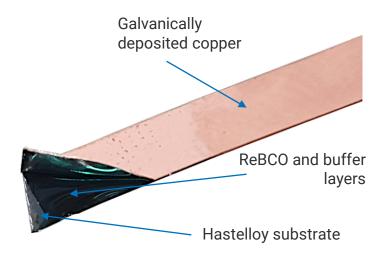
Ascend Evo 1.0 GHz – Ascend 1.0 GHz comparison

- Ascend Evo 1.0 GHz:
 - 1.0 GHz (23.5 T) for single-story standard laboratories: Easier siting with significantly reduced footprint, weight and stray field:
 - Total weight: < 1/3 compared to Ascend 1.0 GHz
 - Helium boil-off: < 1/3 compared to Ascend 1.0 GHz</p>
 - He hold time: 2 x compared to Ascend 1.0 GHz
 - Stray field 5 Gauss containing surface (1.9 m radial x 2.7 m axial): roughly 1/4 compared to Ascend 1 GHz
 - Minimum ceiling height: 3.25 m (single-story lab)

Ascend 1.0 GHz 4.0m Ascend Evo 1.0 GHz 2.8m BRUKER

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.

Size comparison of Ascend 1.0 GHz (LTS only, 2K) and Ascend Evo 1.0 GHz (HTS/LTS hybrid, 4.2 K)



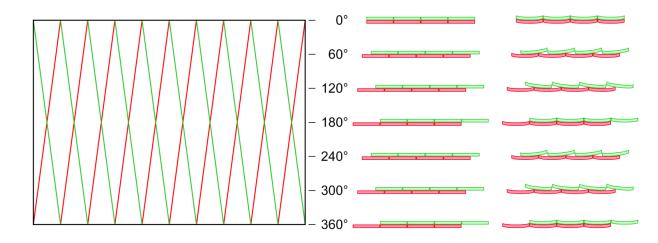
Requirements to REBCO coated conductors for UHF NMR applications

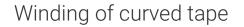
Requirements to ReBCO coated conductors for UHF NMR application

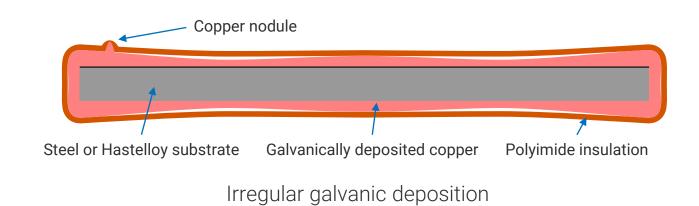
- Key technical requirements to ReBCO coated conductors for UHF NMR magnets:
 - Uniform properties along entire piece lengths (Ic, copper, insulation,...)
 - Long piece lengths (typically 300 m to 900 m) without Ic drop-outs (Ic dips)
 - High Ic values at high magnetic fields and low temperatures (I_c at 4 K and 10 T B||c: ~350 A to >500 A for 4 mm width)
 - Excellent mechanical properties (Hastelloy substrate,...)
- Commercial requirements:
 - steady and reliable supply
 - pricing

Requirements to ReBCO coated conductors for UHF NMR application

- Tape Insulation:
 - The ReBCO tape insulation shall
 - insulate well: withstand high voltages
 - be thin and mechanically strong
 - easy to remove at the tape ends
 - Good compromise not obvious
 - Insulation options
 - Wrapping Polyimide tape, with or without glue
 - Application of Polyimide varnish interesting


Types of Polyimide-tape insulation


IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.



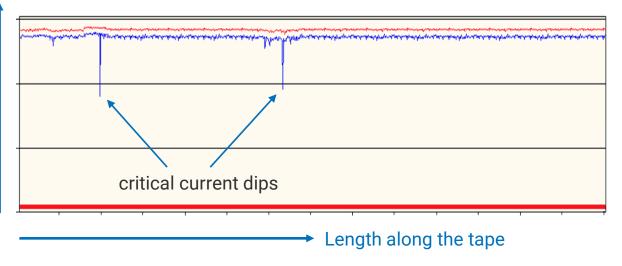
Requirements to ReBCO coated conductors for UHF NMR application

- The goal is a compact winding pack with a minimal void fraction.
- The tape cross section should be as rectangular as possible, irregularities lead to voids.
 - Example curved tapes ("C-bow"): difficult to wind, gaps in winding pack.
 - Example of non-regular galvanic deposition of copper (dog-boning, copper nodules): voids in winding pack, insulation problems.

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.

ReBCO coated conductors quality assurance and quality control processes

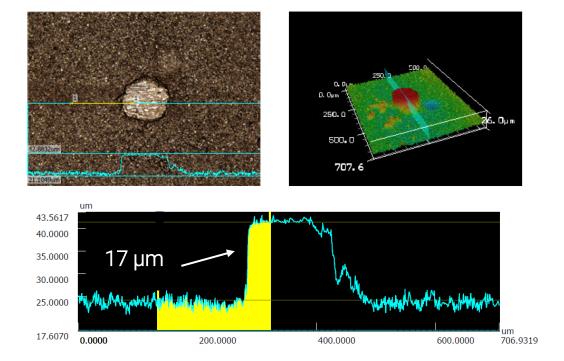
ASC22 THE APPLIED SUPERCONDUCTIVITY CONFERENCE, 23 - 28 OCTOBER 2022, HONOLULU, HAWAII, USA


I_C

ReBCO coated conductors quality assurance and quality control processes

- For the procurement of long insulated ReBCO coated conductors, Bruker strongly relies on the quality assurance and quality control processes at the ReBCO tape production sites.
- Typically, the acceptance of ReBCO coated conductors is based on
 - magnetic TapestarTM measurements
 - and transport Ic measurement at 77 K, selffield,

along the whole length of the tapes.


Tapestar[™] measurement (symbolic data)

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.

ReBCO coated conductors quality assurance and quality control processes

- Quality control at Bruker on the ReBCO coated conductors:
 - tests on short samples (~1m) from both ends of the long, already insulated, tapes and includes:
 - Ic (@ 4.2 K, 10 T),
 - micrographs of cross-sections, and
 - confocal microscope analysis of the copper surface.

Confocal laser microscope analysis (example of a copper nodule on an HTS tape)

1.x GHz HTS-LTS hybrid NMR magnets delivered and ordered

Installed 1.2 GHz NMR Systems

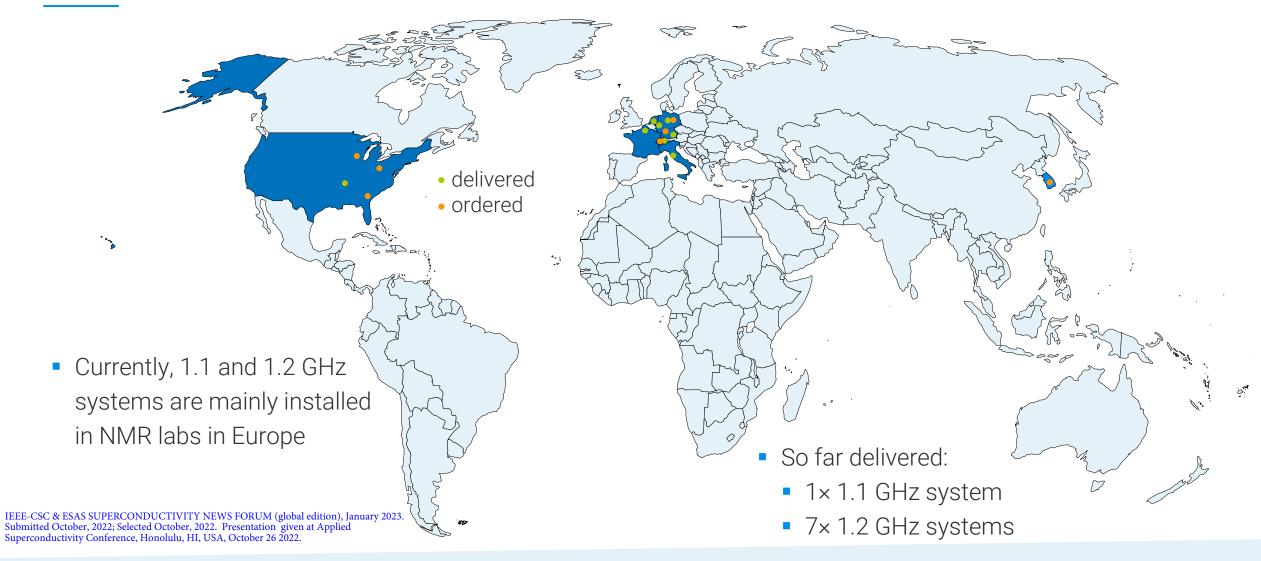
CERM, University of Florence, IT

ETH Zurich, CH

MPI Göttingen, DE

FZ Jülich, DE

Utrecht University, NL


TU München, DE

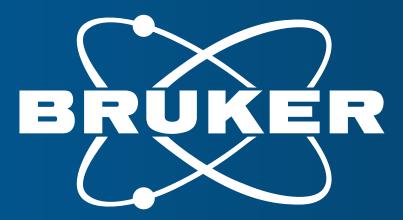
CNRS Lille, FR


BRUKER

1.1 and 1.2 GHz NMR systems using ReBCO coated conductors ordered or delivered worldwide (October 2022)

Ascend Evo 1.0 GHz systems using ReBCO coated conductors worldwide (October 2022)

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Submitted October, 2022; Selected October, 2022. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 26 2022.



Thank you!

1.

......

Bruker Switzerland AG

Innovation with Integrity