Advances in Nanoscale Analysis of Hf doped Nb₃Sn wires using Atom Probe Tomography

Laura Wheatley¹, Shreyas Balachandran², Chiara Tarantini², Peter Lee², David Larbalestier², Paul Bagot¹, Susannah Speller¹, Michael Moody¹ and Chris Grovenor¹

¹ Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
²Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 E. Paul Dirac Dr., Tallahassee, FL 32310, USA

Research at University of Oxford is supported by EPSRC, the main Research Council for Physical Sciences in the UK
Research at FSU is supported by the US Department of Energy, Office of Science, and Office of High Energy Physics under Award Number DE-SC0012083, and was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreements NSF- DMR-1644779 and by the State of Florida.
Requirement: High Performance Nb$_3$Sn for FCC

• Operational J_c in Nb$_3$Sn superconductor: 1500 Amm$^{-2}$ and RRR > 150 at 16 T (4.2 K)
• Needs radical improvements in performance of Nb$_3$Sn filaments

Schematic of the FCC
www.home.cern/science/accelerators/future-circular-collider
Optimising the Superconducting Properties

• For high J_C at 16 T the pinning force function will require both grain boundary and secondary point pinning

$$F_P = A_{GB} \left(\frac{H}{H_{IRR}} \right)^{0.5} \left(1 - \frac{H}{H_{IRR}} \right)^2 + A_{PD} \left(\frac{H}{H_{IRR}} \right) \left(1 - \frac{H}{H_{IRR}} \right)^2$$

• Grain boundaries and optimised point defects are on the scale of the coherence length (3-4 nm in Nb$_3$Sn)

• Nanostructural analysis is required to visualise grain boundaries, secondary phases and local chemistry changes on this scale
What is Atom Probe Tomography?

- 3-Dimensional characterisation technique
- High spatial and chemical resolution
- Sensitivity down to ppm

Animation adapted from Dr A. J. London

\[\frac{m}{n} \approx 2eV \left(\frac{t_{\text{flight}}}{L} \right)^2 \]
Additions for Point Defects

- Addition of Group IVB elements Zr and Hf to produce oxide nanoparticles [1,2]
- Ta known addition to increase the upper critical field
- Obvious shift to point pinning function seen in Hf doped sample

![Graph of Nb-Ta4 sample](image)

![Graph of Nb-Ta4-Hf1 sample](image)

Sample studied in this work

Are nanoparticles present in the Nb$_3$Sn region?
Atom Probe Tips from Nb₃Sn layer

HfO₂ molecular (cluster) ions

Tip 1

Tip 2

Tip 3

Tip 3 Isoconcentration surface HfO²⁺

HfO²⁺ 1.5 ionic%

<table>
<thead>
<tr>
<th>Tip</th>
<th>Average HfO₂ Diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>2.9</td>
</tr>
</tbody>
</table>
• Cu is located at grain boundaries
• Additional isolated Cu regions are present within grains
Oxide Source

• **No oxygen** added to the alloy

• Are HfO$_2$ nanoparticles present within the Nb-Ta-Hf alloy before reaction?

![Pre-heat treatment](image1)

![Post-heat treatment](image2)

Nb-4Ta-1Hf
Pre-Heat Treatment Nb-Ta-Hf alloy: Hf distribution

There is no sign of HfO$_2$ clusters

Hf ions

Tip 4 20 nm Tip 5 20 nm Tip 6 20 nm

Nb-Ta$_4$-Hf$_1$
Post Heat Treatment Nb-Ta-Hf alloy

Now the unreacted regions of metallic alloy do contain HfO$_2$ nanoparticles.

Tip 7 20 nm Tip 8 20 nm Tip 9 20 nm
Oxygen content in pre-heat and post-treatment Nb-Ta-Hf alloy is very similar, with far lower oxygen in the Nb$_3$Sn layer which is confined to purely oxide clusters.

<table>
<thead>
<tr>
<th>Pre-heat treatment Nb alloy (Oxygen at%)</th>
<th>Post-heat treatment Nb alloy (Oxygen at%)</th>
<th>Nb$_3$Sn (Oxygen at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.59</td>
<td>3.66</td>
<td>0.49</td>
</tr>
<tr>
<td>1.95</td>
<td>3.61</td>
<td>0.87</td>
</tr>
<tr>
<td>3.83</td>
<td>1.36</td>
<td>0.16</td>
</tr>
</tbody>
</table>
We can also study the reaction process

Sn diffuses in → NbSn₂ → Nb₆Sn₅ → Nb₃Sn

550°C/100h and 670°C/100h
Residual Nb_6Sn_5

- Nb_3Sn shown with the dark green surface
- The rest of the tip is Nb_6Sn_5
- HfO$_2$ clusters seen in Nb_6Sn_5 as well as the Nb_6Sn_5

TEM image of $\text{Nb}_3\text{Sn} - \text{Nb}_6\text{Sn}_5$

S. Balachandran et al. 2019
Supercond. Sci. Technol. 32 044006
Cu preferentially partitioned into the Nb\textsubscript{6}Sn\textsubscript{5}

<table>
<thead>
<tr>
<th>Location</th>
<th>(\text{Nb}_3\text{Sn}) Copper at%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.47</td>
</tr>
<tr>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>(\text{Nb}_6\text{Sn}_5) Copper at%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.38</td>
</tr>
<tr>
<td>6</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 2022.
Next Steps: Comparison of Oxygen content to a Commercial Alloy

<table>
<thead>
<tr>
<th>Pre-heat treated Monofilament Nb-4Ta-1Hf alloy (at%)</th>
<th>Commercial Nb-4Ta-1Hf alloy (at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.59</td>
<td>2.17</td>
</tr>
<tr>
<td>1.95</td>
<td>1.09</td>
</tr>
<tr>
<td>3.83</td>
<td>1.04</td>
</tr>
</tbody>
</table>

• Evidence of larger HfO$_2$ precipitates in the commercial alloy
• Next step is to compare oxygen content across alloys using EPMA

BSD image of a commercial alloy

EDX courtesy of Junliang Liu
Conclusion

• HfO$_2$ nanoparticles are found in the post-heat treatment Nb-Ta-Hf alloy, the Nb$_6$Sn$_5$ and the Nb$_3$Sn layer

• The oxygen was originally dissolved in the Nb-Ta-Hf alloy, leading to the formation of these oxides during heat treatment

• Nanoscale Cu islands are also present in the Nb$_3$Sn (and may contribute to pinning)

• Nb$_6$Sn$_5$ contains a larger concentration of Cu than the Nb$_3$Sn that forms from it (approx. 2at%)

• Different Nb-Ta-Hf alloy compositions can be compared to determine the best starting material for producing optimal superconducting properties