

Latest development on superconductive sensors, detectors and their applications at SIMIT

Xiaoming XIE

Shanghai Institute of Microsystem and Information Technology

Chinese Academy of Sciences

ACASC-Asian ICMC 2023, Oct. 29-Nov. 1, 2023@Shanghai

- General introduction to superconducting electronics
- SQUID sensor development and applications
- **SNSPD detector development and applications**

Macroscopic Quantum States

Superconductivity is an inherently quantum phenomenon manifesting itself on a macroscopic scale. - Fritz London (1935)

$$\Psi(\mathbf{r},t) = \Psi_0(\mathbf{r},t) e^{\mathbf{i}\theta(\mathbf{r},t)}; \quad |\Psi(\mathbf{r},t)|^2 = \mathbf{s}(\mathbf{r},t)$$

$$(\Lambda \mathbf{I}_{\mathbf{r}}) = d\mathbf{I} + \int \mathbf{B} \cdot d\mathbf{S} = n\Phi \quad \Phi = \frac{\mathbf{h}}{\mathbf{h}} = 2.07 \times 10^{-15} \text{ vs}$$

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

2e

Josephson Quantum Effects

Brian David Josephson

DC effect: $V = 0 \Rightarrow I = I_0 sin(\phi)$

AC effect:
$$V \neq 0 \Rightarrow d\phi/dt = 2\pi V/\Phi_0$$

Josephson equations lay the foundation of superconductive electronics

$$E_{J} = \int_{t_0}^{t_1} IV dt = \int_{t_0}^{t_1} I_0 \sin(\varphi) \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} dt = \frac{\Phi_0 I_0}{2\pi} [1 - \cos(\varphi)] = E_{J0} [1 - \cos(\varphi)]$$
$$E_{J0}(1\mu A) \approx 3.2 \times 10^{-22} \text{ Jule} \sim 2.0 \text{ meV} \sim 23 \text{K} \text{ (Josephson Coupling Energy)}$$

Sensors/Detectors & Their Applications

Digital/Quantum Circuits for HPC

Superconductive circuits are the enabling technologies for future heterogeneous supercomputing in a foreseeable timeframe

Superconductivity Research at SIMIT

1928 - 2000

Shanghai Institute of Metallurgy Chinese Academy of Sciences (SIM-CAS)

2001 -

Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences (SIMIT-CAS)

China's First Dedicated Fab for SC VLSI

SELF = Superconducting ELectronics Facility

Scale: 1500 m² clean room, including 300 m² for 100 class
Capabilities: 4/6" 、150 nm stepper、5 nm EBL、ICP/IBE、 PECVD、CMP etc.

- □ General introduction to superconducting electronics
- SQUID sensor development and applications
- **SNSPD detector development and applications**

SQUID = **Superconducting QUantum Interference Device**

A SQUID is an ultra-sensitive two-terminal device for sensing flux threading the SQUID loop

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

Biasing a DC SQUID

Flux Locked Loop

range

Flux Transformers

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

SQUID Design & Fabrication

High Performance SQUID Magnetometer

High Performance SQUID Gradiometer

SQUID gradiometer with submicron JJs and centimeter-sized input coil for geophysical prospection

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

Detection of Magnetic Fields of our Body

SQUID Based Sensing Units + Noise Suppression Algorithms + MSR (Optional)

Detection of Magnetic Fields of our Body

 $B = k \frac{Q}{3}$

 $G_{out} = \sum_{i=1}^{3} (C_{Bi}B_i) + \sum_{j=1}^{5} (C_{Gj}b_jG_j) + C_{G2}b_6b_7G^{(2)}$

Reference sensor output

Signal sensor output

 B_i (i=1 to 3), G_j (j=1 to 5) are outputs of the hardware reference sensors

 $G^{(2)}$ is the output of the hardware signal sensor C_{Bi} (i=1 to 3), C_{Gj} (j=1 to 5) and C_{G2} are coefficients to be optimized

The task is to maximize the signal to noise ratio of the systems by optimize the design of signal and reference sensors and the coefficients in the equation (software gradiometer)

MCG System for Unshielded Environment

NMPA approved MCG system

Potential clinical applications:

- 1. Early screening for ischemia heart diseases (IHD)
- 2. Diagnosis of IHD, such as obstructive coronary heart disease, nonobstructive coronary heart disease
- Cardiac prognostic monitoring
- Arrhythmogenic risk assessment

$$\mathbf{G}_{out} = \sum_{i=1}^{3} (C_{Bi}B_i) + \sum_{j=1}^{5} (C_{Gj}b_jG_j) + C_{G2}b_{\beta}b_{\gamma}G^{(2)}$$

3 B sensors and 5 gradient sensors for noise suppression

Magnetocardiograph (MCG) based diagnostic workflow

Diagnosis (e) Correlate features with knowledge of action potential propagation (d) Inspect spatial signal distribution and extract features (a) Raw MCG recording from sensor array (c) Identify cardiac events TT interval (b) Averaged MCG waveform from a healthy subject

Normal MCG

IHD

Prototype of Fetal MCG system

Noise level: ≤0.8pTpp @1-90Hz

 $\mathbf{G}_{out} = \sum_{i=1}^{3} (C_{Bi}B_i) + \sum_{j=1}^{5} (C_{Gj}b_jG_j) + C_{G2}b_6b_7G^{(2)}$

3 B sensors and 5 gradient sensors for noise suppression + local shielding

Real-time fetal MCG recordings at 28 weeks of gestation (cooperated with Shanghai Xinhua hospital)

Preclinical trials to be started:

- 1. Evaluation of fetal arrhythmias, known or suspected conduction disorders, sinus/atrioventricular node disease
- 2. Diagnosis of a long QT syndrome
- 3. Monitoring fetal development, such as fetal autonomic nervous system activity, fetal movement

Magnetoenterogram (MENG) & Magnetogastrogram (MGG)

Challenges

Very low freq.: 3 to 12 cpm (< 0.2 Hz) Very low magnitude: several pT Averaging not applicable

Solution

Advanced noise rejection algorithms

Outlook

Modernization of Chinese Traditional Medicine Health Research

Magnetoneurography (MNG) System under Development

Challenges

Optimization of stimulating profile Interference of the stimulating device

Outlook

Acupuncture research

Modernization of Traditional Chinese Medicine

Magnetoencephalography (MEG) System

Magnetic Resonance Imaging (MRI)

✓ Advantages

 \odot

....

- ☺ No ionizing radiation, non-invasive
- Image acquisition from any direction and in any orientation
- © Excellent contrast on abnormalities in soft tissues/organs

Ultra-low fiel MRI	ow field IRI MRI		Low field MRI		High filed MRI		Ultra-high field MRI		
< 0.01 T	0	.01 ~ 0.1 T	0.1 ~ 1 T		1.5 ~ 3 T		> 3 T		
	I			T	I		I	I	
0.001 0.01 0.1 1 2 3 4 5 <i>B</i> ₀ field strength (T)									
Two trends		Higher field Lower field	eld (11.7 T, 13 eld: portable、	52 to sp	ons @ Eu pecific ap	irop plic	e) ations		

ULF MRI System

≻ 5 channels; noise: 1.5 ~ 3 fT/√Hz

FPGA-based MRI Console

Parameter Setting, Sequence Generation, Signal Acq. & Pre-processing

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China 27

Environmental Interference Suppression Techniques

Five-Channel Imaging and Reconstruction

□ 2nd-order gradiometer array to enlarge FOV

Geometry optimization to increase SNR & reduce external interference

Realization of SENSE & GRAPPA parallel imaging

Geometry of signal channels

/37 mm

Deep-learning Based Post-processing

> Main challenges: low spatial resolution & Gibbs artifacts

Hidden layer with sine activation **CINR Network** Output Input layer laver function CNR with local ensemble Continuous image neural LR Input: pixel $I(x_q) = \sum_{t \in \{00,01,10,11\}} \frac{S_t}{S} f_{\theta}(z_t^*, x_q - v_t^*).$ $\stackrel{\bullet}{\rightarrow} \hat{I}(x_q) \stackrel{\bullet}{\longleftrightarrow} I^{\text{Label}}(x_q)$ and coordinate representation Ground truth Predicted (CINR) Decoder HR image HR pixel HR pixel coordinate x_{a}

FFT recon.

Processed by CINR

Geophysical Methods for Mine Prospecting

Searching for mine by detecting and analyzing the underground spatial variation of physical properties of the target areas (density, magnetic permeability, resistivity, acoustic impedance etc)

Superconducting sensors provide extreme sensitivity to gravity, magnetic & electromagnetic measurements SIMIT sets its focus on magnetic and electromagnetic methods

Ground Based SQUID TEM System

Transient Electromagnetic Method (TEM)

- ✓ Effective for metal mine exploration
- ✓ Traditional coil system: 500m depth

SQUID based TEM system @ SIMIT

40KW / 60KW

Different sensors and receivers

Typical Results Obtained

SQUID Full-Tensor Aeromagnetic System

✓ Helicopter based SQUID full-tensor system developed @SIMIT

Parameters	Best Others	SIMIT		
Total field	/	1nT		
Noise level	40fT/m/√Hz	90 fT/m/√Hz		
Resolution	10pT/m	20pT/m		
1/f corner	/	10		
Bandwidth	1kHz	1kHz		
Chanell	9	9		
Weight	/	50kg		
Refilling time	2 days	2 days		

UAV based system is being tested for more economical exploration

- General introduction to superconducting electronics
- SQUID sensor development and applications
- Solution Solution

Working Principles of SNSPD

SNSPD = Superconducting Nanowire Single Photon Detector

Advantages of SNSPD

SPD	SDE (%)	CR (Hz)	DCR (s ⁻¹)	TJ (ps)	Temp (K)
SNSPD (NbN)	≥ 95	≥ 100 M	≤ 1	≤ 20	~ 2.1 K
STJ (AI)	60	5 K	N/A	N/A	< 1K
TES (W)	95	100 K	~ 0	100 ns	0.1 K
InGaAs APD	20	100 M	16K	55	200 K
IR PMT	2	10 M	200 K	300	RT

@ 1550 nm

SNSPD show superior performance advantages compared to other detectors

Cooling is no longer a bottleneck of superconductive devices (down to ~ 2K in several hours at an expense of 1.5 KW)

Applications of SNSPD

Quantum communication

Quantum key distribution Quantum teleportation

Quantum computing

Optical quantum computing Ion-trap quantum computing

Quantum measurement

Quantum time synchronization Super resolution imaging

Laser communication

Deep space, moon and other long distance laser communication

Lidar

Single-photon lidar Quantum lidar

Biofluorescence detection

Bioluminescence detection in the near-red region II No afterpulse fluorescence detection

Design of SNSPDs

High SDE SNSPD

Low DCR SNSPD

Decoupling of light absorption and light response

Compared to the conventional single-layer devices:

- □ The optimal detection efficiency was increased from 90% to 98%
- □ Efficiency greater than 80% device yield increased from 10% to 74%
- □ Opt.Express, 2020 ; Patent :202010837660.0

Patent: ZL201710207615.5 SUST 31, 035012(2018)

SNSPD Fabrication Process Development

Main Fabrication process

High fabrication yield

Image@2inch wafer

92	不饱和	89	不饱和	88	88	X	94	X	X
82	77	73	不饱和	90	86	93	90	X	86
不饱和	84	不饱和	91	87	91	87	87	92	Х
多模	93	90	92	87	92	90	94	87	91
93	90	92	93	90	89	95	91	88	94
92	90	X	95	88	92	94	92	88	93
93	91	86	93	87	X	退化	89	88	91
多模	91	94	91	93	90	90	90	89	91
不饱和	91	X	91	82	89	93	91	89	93
88	多模	91	84	90	89	x	91	91	95

SDE@2inch wafer

SDE distribution

SNSPD Applications: LIDAR

Satellite laser ranging

- 1. 2016: 3000 km, LARES SLR, Resolution of 8mm.
- 2. 2017: 20,000km, Glonass SLR, Resolution of 2cm.

Free-space spectroscopy based on lidar

Light Sci App 10(1): 212. (2021)

Applications: Quantum Communication

Applications: Quantum Computing

Key Products MCG, fMCG CFDA approved

Key Products SNSPD systems No.1 market share in China

Key Products Geophysical prospection services

- Superconductive sensors/detectors have played indispensable roles in many applications requiring extremely high sensitivity.
- SIMIT has developed a series of SNSPDs which have demonstrated superior performance advantages in quantum efficiency, dark count rate etc. The detectors have been successfully used in photon based quantum key distribution and quantum computation etc.
- SIMIT has developed a series of SQUID sensors which are successfully used in bio-imaging, ultra low field magnetic resonance imaging and geophysical prospection.
- SIMIT has developed China's first superconductive VLSI fabricating lines, which is used for developing superconductive sensor/detectors, digital circuits and quantum circuits. We welcome colleagues from home and abroad for scientific collaborations.

Acknowledge

Thanks for your attention.