

南京大学

Superconducting nanowire singlephoton detectors and imagers

Qingyuan Zhao

Nanjing University

ISS 2024, Kanazawa

Superconducting Nanowire Single Photon Detector (SNSPD)

Four Quadrant Serial Nanowire Array

Light Sci. Appl. 13(1), 25 (2024).

Quasi-parallel counting in a serial nanowire architecture

Single photon firing events will **NOT** affect the bias current of the unfired pixels.

S. Jahanmirinejad, et. al., Appl. Phys. Lett. **101**(7), (2012). X. Tao, et.al IEEE Photonics J. **12**(4), (2020).

High-efficiency and high counting rate

Jitter: 21ps~78ps

Counting rate: 1.6 G ph./sec @ 45% DE

Examples of fast counting pulses

6

Single-photon optical communication characterizations

Sensitivity (ph/bit)

0

Pulse Position Modulation Format + ½ rate SCPPM FEC

Free-space optical communication testbed

IEEE CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 58, Feb. 2025. Presentation given at ISS 2024, Kanazawa, Japan, Dec. 3-5, 2024.

 $4 \times 6 = 24$ photons

Tolerant to strong background noise for daytime communication

0.75-

0.5

0.25

0

0

Normalized counts

Beam spot tracking

Four-quadrant positioning under photon-counting mode

$$\Delta x = \frac{S_{\rm A} + S_{\rm B} - S_{\rm C} - S_{\rm D}}{S_{\rm A} + S_{\rm B} + S_{\rm C} + S_{\rm D}}$$
$$\Delta y = \frac{S_{\rm A} + S_{\rm C} - S_{\rm B} - S_{\rm D}}{S_{\rm A} + S_{\rm B} + S_{\rm C} + S_{\rm D}}$$

Tracking **OFF**

Tracking **ON**

High dynamic detection and imaging

High flux – waveform variance

Laser Photonics Rev. 2400483, 1–12 (2024).

Demonstrations of high dynamic imaging

IEEE CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 58, Feb. 2025. Presentation given at ISS 2024, Kanazawa, Japan, Dec. 3-5, 2024.

11

Superconducting nanowire delay line imager

*Similar to MCP Delay line anode readout method.

Q.-Y. Zhao,... K.K. Berggren et al., Nat. Photonics,, 2017.

Scale up to various arrays

Higher spatial resolution in 1D linear array
Less crosstalk in 2D array

- Limitation 1. I in 2D array 2. I
 - 1. Limited Spatial resolution
 - 2. Low filling factor

2D array 16×16

H. Wang, et. al., Opt. Lett. 47(14), 3523 (2022).
L. Kong, et. al., Opt. Lett. 45(24), 6732 (2020). 13

Orthogonal time-amplitude multiplexing array

L. Kong, et.al., Nat. Photonics **17**(1), 65–72 (2023).

Orthogonal time-amplitude multiplexing array

Nearby pixels: Amplitude multiplexing (Hotspot quantization) **Distant pixels**: Time multiplexing (Delay line)

OTAM: 100 ppp, EC

OTAM: 1 ppp, EC

L. Kong, et.al., Nat. Photonics **17**(1), 65–72 (2023).

High-Efficiency Kilopixel Imager at 1550 nm

- Low Tc material: WSix for enhanced QE
- Microstrip transmission line + Optical Cavity
- Operate at 1 K

- **D** Effective Area: 184 μ m × 192 μ m
- □ Vertical Resolution: 4.8 µm (~40 pixels)
- □ Horizontal Resolution: 5.8 µm (~32pixels)

High-Efficiency Kilopixel Imager at 1550 nm

Free space imaging 1K system

Single-photon event camera

Spot moves at 500 Hz

Photon event synchronized, fast and low latency!

Every frame = 200 photons

Hybrid integration quantum photonic circuits

J.W. Silverstone, et. al., IEEE J. Sel. Top. Quantum Electron. **22**, 390 (2016). A. W. Elshaari, et. al., Nat. Photonics **14**(5), 285–298 (2020).

Hybrid integrated SNSPD on waveguides

*Hybrid integration was first demonstrated by F. Najafi, et.al., Nat. Commun. 6, (2015).

>99% on Si waveguide detection efficiency

Wavelength (nm)

See CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 58, Feb. 2025. Presentation given at ISS 2024, Kanazawa, Japan, Dec. 3-5, 2024. 99% on Si waveguide detection efficiency

Other losses: Reflection \approx 0.2%, and waveguide loss

 $DE = (1 - 0.2\%) \cdot 99.92\% = 99.72\%$

Detection coincidence of **100** photons $98\%^{100} = 13.26\%$ $99.72\%^{100} = 75.54\%$ Detection coincidence of **1000** photons $98\%^{1000} = 1.68e - 9$ $99.72\%^{1000} = 6\%$

IEEE CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 58, Feb. 2025. Presentation given at ISS 2024, Kanazawa, Japan, Dec. 3-5, 2024.

Large-scale chip production and automated testing

More details are given in the posters...

IEEE CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 58, Feb. 2025. Presentation given at ISS 2024, Kanazawa, Japan, Dec. 3-5, 2024.

