CCA (Coated Conductor for Applications) 2025 workshop

HTS fusion technology status in China

Jinxing Zheng on behalf of China HTS fusion team jxzheng@ipp.ac.cn Geneva, Switzerland 12 March 2025

Institute of Plasma Physics, Chinese Academy of Sciences

Background of HTS technology for Fusion

HTS technology development

• Key challenges for safe operation of fusion HTS magnets

-Critical performace, AC loss, Stability and Engineering preparation

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland. HTS Technology: (1) Critical Performance under Fusion Irradiation

• Neutron radiation produced by the Fusion D-T reaction will accumulate in the superconducting magnet, causing critical performance degradation and affecting the safe operation

HTS Technology: (1) Critical Performance under Fusion Irradiation

- Irridiation simulation of REBCO: based on first principles and molecular dynamics simulations.
 - with appropriate irradiation, oxygen vacancies and lattice distortion are induced, forming effective pinning centers and improving J_c .
- Irradiation experiments of REBCO: Proton/Gamma-ray/ Neutron irradiation

Ying Zheng, Jinxing Zheng*, et al., Gamma radiation effects on high-temperature superconducting ReBCO tape, Superconductor Science Technology 37 045013, 2024 Ying Zheng, Jinxing Zheng*, et al., Study on the Applicability of Neutron Radiation Damage Method Used for High-Temperature Superconducting Tape Based on Geant4 and SRIM, Science and Technology of Nuclear Installations, 2021, 2839746.

HTS Technology: (2) AC loss calculation Model

• 3 versions of multi-scale AC loss calculation method: to solve the problems of timeconsuming and non-convergence of the AC loss calculation of large-scale HTS magnets

Lei Wang, Jinxing Zheng* et al., Development of Multi-scale Model in Large-scale HTS Coils with Improved Coupling, IEEE TAS, 29(6), 4702207, 2019. Lei Wang, Jinxing Zheng* et al., Real-Time Electromagnetic Simulations of Large-Scale REBCO Solenoid Coils by Combination Model, IEEE TAS, 34(2), 4300207, 2024

HTS Technology: (2) AC loss calculation Model

- Applications and advantages of multiscale methods: can be applied to both 2D and 3D calculations, dramatically improving computational efficiency with high accuracy
- ✓ AC loss calculation of solenoid coil prepared with HTS spiral-wound conductor (like CORC)
- Compared with other computational methods: Higher solution accuracy and faster computation time

Lei Wang, Jinxing Zheng*, Comparative Study of Four Finite-Element Models for Electromagnetic Simulations of Large-Scale REBCO Coils Using Homogenization Technique, IEEE Transactions on Applied Superconductivity, 34(3), 4902605, 2024.

HTS Technology: (3) Stability Analysis Model

• Systematic stability model is established, it can realize accurate AC loss and Nuclear heat loading, achieving 0.01 K high-precision temperature margin calculation

Technical Difficulties:

- Dynamic AC loss and Nuclear Heat Deposition
- Location to calculate minimum
 Temperature Margin
- 0.01 K ΔT accuracy and 1 mm position accuracy

Nuclear Heat of BEST Fusion device with 130 MA Fusion Power

Yudong Lu, **Jinxing Zheng***, et al, An improved analysis method for assessing the nuclear-heating impact on the stability of toroidal field magnets in fusion reactors Nuclear Science and Techniques, 35(6): 96 2024

HTS Technology: (3) Stability Analysis Model

• Established stability analysis model is used to calculate temperature margin of ReBCO conductors for fusion reactor high-field environments

The MQE calculations for the conductors were completed quickly and accurately.

HTS Technology: (4) HTS Conductor

- HTS conductors are the only option for realizing 15 T to 20 T class magnetic fields
 - ✓ Many kinds of HTS conductor structures have been proposed in China

HTS Technology: (4) HTS Conductor (variable-angle CORC)

 The variable-angle CORC optimise current distribution and reduce the current sharing of the outer tapes by adjusting the winding angle of each tape layer, thus significantly reducing overall losses

Jinxing Zheng* et al, High temperature superconducting CORC cable with variable winding angles for low AC loss and high current carrying SMES system, 36, 115032, 2023

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland. HTS Technology: (4) HTS Conductor (HFRC and CORC-COCC)

- Highly Flexible REBCO Cable (HFRC) : use spiral tube as the mandrel to wind the REBCO tapes
- Full size CORC-CICC conductor sample have been manufactured and tested at Sultan lab

Highly Flexible REBCO Cable (HFRC)

CORC-CICC

Tests carried out for performance verification

- 1266 EM cycles
- 2 WUCD (RT-4.5K) cycles
- Quench campaigns @ 47kA, 55 kA, 60kA&65kA

HTS Technology: (4) HTS Conductor (New TMMC)

- The New Tenon-mortise-based modularized conductor (TMMC) is designed for reducing AC loss and increase current capacity
- ✓ Outer layer provide **shielding effects** to inner layers.
- ✓ The two adjacent sub-conductors are assembled with the full-disaligned configuration to reduce AC losses.

Jinxing Zheng* et al., A newly developed 10 kA-level HTS conductor: innovative tenon-mortise-based modularized conductor (TMMC) based on China ancient architecture, Superconductor Science and Technology, 37, 056006, 2024

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland. HTS Technology: (4) HTS Conductor (New TMMC)

The TMMC conductor is manufactured and tested at 77K, Ic=13.69 kA@77K,SF.
 Engineering critical current density is 18.1 A/mm²

Ic Test of TMMC conductor with liquid nitrogen 13.69 kA@77K, Self-field

Jinxing Zheng* et al., A newly developed 10 kA-level HTS conductor: innovative tenon-mortise-based modularized conductor (TMMC) based on China ancient architecture, Superconductor Science and Technology, 37, 056006, 2024

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland. HTS Technology: (4) HTS Conductor (New TMMC)

- \bullet Design and Preparation process optimization to improve Engineering $J_{\rm c}$ of TMMC
 - ✓ Change the number of layers and mislignment angle to reduce AC loss
 - ✓ Reduce the thickness of former and increase the density of HTS stacks

Jinxing Zheng* et al., A newly developed 10 kA-level HTS conductor: innovative tenon-mortise-based modularized conductor (TMMC) based on China ancient architecture, Superconductor Science and Technology, 37, 056006, 2024

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland. HTS Technology: (4) HTS Conductor (Quasi-isotropic HTS Strands)

Development of CICC made from Quasi-isotropic HTS Strands

#This work is form North China Electric Power University

Cheng Junhua, et al, IEEE Trans. Appl. Supercond.,35(5): 4800608(8pp), 2025. He Ye, et al, IEEE Trans. Appl. Supercond. 35(5): 4800207(7pp), 2025.

China Fusion Engineering Test Reactor (CFETR)

Participation in ITER

1.PF6 Magnet manuface 2.TF conductor development 3.100% CC coil development 4.100% Feeder development 5.CC & Feeder Conductors 6.TF magnet support 7.Power supply system

CFETR Engineering design

1.3 years conceptual design (2012~2014) 2.7 years engineering design (2015~2021)

CRAFT construction

1.HTS conductor

- 2.TF protype manufacture
- **3.CSMC and testing facility**
- 4.SC conductor testing facility
- 5.SC material testing facility
- 6.SC magnet testing facility

Explore and master fusion DEMO level key technologies

Establish the method and standard for CFETR development

China Fusion Engineering Test Reactor

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland. Development of HTS Solenoid Coil in ASIPP

• High current capacity HTS solenoid coil with forced-flow cooling

- \checkmark 8 sub-solenoid coils assembled coaxially and connected in series.
- \checkmark It is cooled by forced-flowing cooling with high cooling efficiency.

Main parameters of solenoid coils	
Parameter	Value
Operating current	6 kA
Layers in radial direction	8
Height of coil	985 mm
Inner/Outer diameter of coil	194.5mm/415.5mm
Total length of tapes	20.58 km
Inductance	28.21mH
Cooling	Forced-flow with supercritical helium

Solenoid coil

Startorus Fusion HTS Fusion Device

 Startorus Fusion is located in Xi'an, China, and is dedicated to the commercial application of fusion energy and the development of related technologies.

Startorus Fusion HTS Fusion Device

• R&D of HTS magnets

✓ 3 T D-shaped TF magnets for next step spherical tokamak
 ✓ Ultra compact CS magnets for next step spherical tokamak

Compact CS magnets

D-shaped TF magnets

Energy singularity HTS Fusion Device

• Energy Singularity built and operated first all HTS tokamak—HH70

✓ HH70 was built and operated in 2024, all-HTS tokamak, validated and demonstrated HTS application in fusion device.

Li Z Y, Pan Z C, Zhang Q J, et al., Development and construction of magnet system for world's first full high temperature superconducting tokamak, Superconductivity. 12, 100137, 2024.

Energy singularity HTS Fusion Device

- HH70 supports the next generation HH170 R&D of the Energy Singularity
- " Jingtian " magnets are currently being developed with a target: Bmax≥ 25T

 "Jingtian " magnets has generated a magnetic field of up to 21.7 T in the first round of through-flow experiments, setting a record for the highest magnetic field in a large-aperture, HTS D-shaped magnet.

"Jingtian" magnet was energized with a current of **24,300 A**. The total number of ampere-turns in the magnet reached **9,260,000 a-t**, and the J_{ce} of the winding reached **157 million A/m²**.

Other HTS Application: (1) Superconducting motor

- Based on fusion superconducting magnet technology, successfully developed HTS motor in aircraft propulsion (98% efficiency, heat leakage <5W)
- Assembled with the UAV "LQ-H" and accomplished flight verification

Flight verification (Flight altitude ~500m, Total weight: ~150kg)

Zheng J X^{*}, et al., Flight verification of cooling self-sustaining high-temperature superconducting motor, Superconductor Science Technology 37 07LT02, 2024 Sun JX, **Zheng JX**^{*}, et al., Design of Axial Flux HTS Machine Prototype and AC Losses Calculation, IEEE Transactions on Applied Superconductivity, 33(8), 5203906, 2023

Other HTS Application: (2) Superconducting MPDT

 Based on the high precision gradient field superconducting magnetic potential control technology, the 100 kW SC magnetoplasmadynamic thruster (MPDT) has been successfully developed

Aftab H, **Zheng JX***, et al., Exploring efficiency in next generation high temperature superconducting-enhanced applied field magnetoplasmadynamic thrusters: A combined numerical and experimental study, *Acta Astronautica* 223 448-61, 2024

Liu HY, Zheng JX*, et al., Research on the Gradient-Field Superconducting Magnet for Magnetoplasmadynamic Thruster Performance Improvement, IEEE TPS., 50(12), 2022

Zheng JX*, et al, Integrated Study on the Comprehensive Magnetic-Field Configuration Performance in the 150 kW Superconducting Magnetoplasmadynamic Thruster, Scientific Report 11,20706, 2021

- HTS technology is the key to construction of the next generation of compact fusion reactors
- The research on the technology of HTS fusion device has been fully carried out in China. The research on the technology of high-field HTS magnet has just been initially established.
- ASIPP has carried out a series of research works on critical performance, AC loss, Stability analysis and engineering preparation of HTS conductors. High-field HTS insert magnet and fusion magnet above 20 T are being developed in ASIPP.
- Several companies in China (Startorus Fusion & Energy singularity and so on) have established small-scale HTS fusion experimental devices. The fusion device with a higher magnetic field will be built in the next step.

Acknowledgements

We are very grateful to the following for their information and assistance!

INA ELECTRIC POWER UNIVERSITY

Thank you for your attention!

jxzheng@ipp.ac.cn