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Presenter
Presentation Notes
Multichannel on-scalp MEG based on high-Tc SQUID magnetometers
D. Winkler, J.F. Schneiderman, A. Kalabukhov, M. Chukharkin, M. Xie, S. Ruffieux, C. Pfeiffer.
 
Recent development of high-Tc SQUID magnetoencephalography (MEG) has shown the potential of the technique both as a possible replacement for the traditional low-Tc systems [1-5] and for increased information capacity from the close proximity to the brain [6]. SQUID magnetometers made from single layer high-Tc superconductors usually have an order of magnitude or more high1er noise than their multilayer low-Tc counterparts. However, for MEG applications, the simpler cryogenic requirements make it possible to decrease the sensor-to-head distance from 20 mm to approximately 1 mm, retaining the signal-to-noise ratio. Furthermore, higher spatial resolution could be obtained and higher moments of the sources could be resolved from near-field measurements.  Here, we report on benchmarking of high-Tc vs. low-Tc MEG and on the development of a multichannel high-Tc MEG system. The system is configured with a densely-packed set of seven 8.6 mm x 9.2 mm high-Tc SQUID magnetometers positioned in a slightly concave hexagonal pattern on a sapphire window connecting thermally to a liquid nitrogen bath. A method of direct feedback injection to the SQUID loops was chosen to minimize crosstalk between the sensors. To improve the field sensitivity, we have developed a new method to produce high-Tc flux transformers for flip-chip arrangements for the next generation MEG system. Finally, we are investigating the possibility to use high-Tc nano-wire based SQUIDs as magnetometers for MEG in future systems.
 
Y. Zhang et al., Brain Topogr., vol. 5, 379 (1993).
H. J. Barthelmess et al., IEEE Trans. Appl. Supercond., vol. 11, 657 (2001).
F. Öisjöen et al., Appl. Phys. Lett., vol. 100, 132601 (2012).
M. I. Faley et al., IEEE Trans. Appl. Supercond., vol. 23, 1600705 ( 2013).
J. Dammers et al., Appl. Phys. Lett., vol. 104, 213705 (2014).
J. F. Schneiderman, J. Neurosci. Methods, vol. 222, 42 (2013).
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Outline

" Introduction
= Magnetoencephalography (MEG) and focal MEG
= High-T_SQUIDs
= Why high-T_ MEG
= MEG - Benchmarking a single channel high-T_ MEG against a low-T_ ELEKTA MEG
= Benchmarking experiments with phantoms
= Benchmarking and protocol for focal MEG on human subjects

= 7-channel high-T_ MEG system (KAW NeuroSQUID project)
= Direct feedback injection to minimize crosstalk
= Preliminary measurements
" Flux transformers
= High-T_nanoSQUIDs
= Single-layer device
= Flip-chip device
= Conclusion
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Outline

" Introduction

= Magnetoencephalography (MEG) and focal MEG
High-T_ SQUIDs
Why high-T. MEG
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The human brain

= Most complex organ known
= ~10 neurons and ~10%° synapses
= The number of combinations exceeds
the number of particles in the universe!
= Cognition and consciousness
= Understanding the brain
= Philosophical questions
= Brain disorders a major burden for the society
= |n Europe, direct and indirect expenses of brain disorders
about 800 billion euros per year* — Dendrite
= Human suffering )
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How to interrogate the brain Benefits of MEG:
" Passive and safe, especially important
25 > for infants
- - . .
invasiveness | ® High temporal resolution of “ms
— 20 . .
E ¥ Reasonable spatial resolution of “mm
=, - -
S1s Spectral content of the signals
= ®  Access to mechanisms and
] . o o 5
€10 e MRS physiological interpretation
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> EEG ° PET | = fMRI: high spatial resolution |
@ but poor temporal resolution
0 » PET: radioactive tracers b
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Temporal resolution [s] = EEG: electrical contact
EEG: Electro- encephalography fMRI: functional MRI
IEEG: Invasive Electroencephalography SPECT: Single Photon Emission Cranial
MEG: Magnetoencephalography Tomography
MRS: Magnetic Resonance Spectroscopy  PET: Positron Emission Tomography
SAGE-Hindawi Access to Research y
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 280289, 10 pages r [ |
doi: 10.4061/2011/280289 Mﬂuqmﬁ
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Magneto- and electroencephalography (MEG/EEG)
— measuring electric brain activity

A single neuron: B~ 0.01 fT 10 000 synchronous and
parallel neurons: B ~100 fT

Currents in active

neurons...
... give rise to small electric voltages

and weak magnetic fields on the
surface of the head

EEG = measuring the
voltages on the scalp

MEG = measuring the
magnetic fields

L= |
Courtesy by Lauri Parkkonen Parkkonen, 2009 MC‘ e
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Applications of MEG

= Clinical use

= Epilepsy diagnostics

" Localization of eloquent brain regions before resections
= Clinical research (e.g.)

= Predictive diagnostics of Alzheimer’s disease

= Personalized stroke rehabilitation

= Assessing brain trauma

= Neuroscientific research

Makelad, Paetau & Parkkonen, SUST 2016

L= |
Courtesy by Lauri Parkkonen M - 4
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Current MEG system’s issue: Sensors are far from the brain!

MEG with superconducting LTS-SQUID
sensors — LHe cooling:

> non-adaptable sensor helmet

> large distance from brain to sensors
—> limited spatial resolution

35
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Sensor count

livanainen, Stenroos, Parkkonen (HBM 2013)

Distance to brain (cm)
™y
Courtesy by Lauri Parkkonen Mp ' -
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Sensor count

If the sensors could be on the scalp...

Distance to brain surface would
reduce to less than half in
adults. Even larger change in

children.
On-scalp
sensors
35
25F | [] SQUIDs
15} N m B
5
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livanainen, Stenroos, Parkkonen (HBM 2013)
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Why on-scalp MEG?
® (Closer to the source
B Larger signals
® Can possibly get the same SNR with less sensitive sensors
® Higher spatial resolution
® Higher information capacity
B Resolve more complicated sources?
®  Avoid LHe (finite resource, ~500 kSEK/yr)
® Canuse
® High-T. SQUIDs at LN2 or
B (OPMs heated above RT)
® Simpler cryogenics for high-T.
B Flexible arrays
B Cheaper systems
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Focal MEG sensors in our case:
HTS dc-SQUIDS based on bicrystal junctions

Weak links: bicrystal substrate - grain boundary - epitaxial YBCO film -
microbridges crossing the grain boudary

D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990) MG_':
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High-T_ SQUID magnetometers for MEG in an
ILK dewar
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Graduate student & SQUID & FFT
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Graduate student & SQUID & FFT
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EEG recordings from 1930s

Hans Berger and early EEG recordings from the 1930s

Berger waves/phenomena

MCZ2
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Alpha and theta bands...

Our first high-T_SQUID-based MEG recordings
= Alpha modulation as expected
= Something strange in the theta band
= Atypical of visual system
= Higher power than alpha fTVHz
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Two-channel recordings: visual (02) and
sensorimotor (C4) alpha

(a) 02 fTWHz
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Oisjden et al, High-Tc superconducting quantum interference device..., App. Phys. Lett. 2012, DOI:10.1063/1.3698152
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Outline

= |ntroduction
= Magnetoencephalography (MEG) and focal MEG
" High-T_SQUIDs
= Why high-T, MEG
= MEG - Benchmarking a single channel high-T_. MEG against a low-T_ ELEKTA MEG
= Benchmarking experiments with phantoms
= Benchmarking and protocol for focal MEG on human subjects

1270 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 6. JUNE 2017 [ ﬁ\B
oSt

Benchmarking for On-Scalp MEG Sensors

Minshu Xie, Justin F. Schneiderman®, Maxim L. Chukharkin, Alexei Kalabukhov, Bushra Riaz,
Daniel Lundqvist, Stephen Whitmarsh, Matti Hamalainen, Veikko Jousmaki, Robert Oostenveld,
and Dag Winkler

" Flip-chip devices

=  Conclusion

MC2
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Work done in collaboration with NatMEG @ KI

Minshu Xie,! Justin F. Schneiderman,?3 Alexei Kalabukhov,1
Maxim L. Chukharkin,# Silvia Ruffieux,® Christoph Pfeiffer,?
Bushra Riaz, 23 Daniel Lundqvist,® Stephen Whitmarsh,® Matti
Hamaldinen,” Veikko Jousmaki,® Robert Oostenveld®, Dag
Winkler?!

1) Department of Microtechnology and Nanoscience — MC2, Chalmers University of Technology,
Gothenburg, Sweden

2) MedTech West

3) Institute of Neuroscience and Physiology , SA/GU, Gothenburg, Sweden

4) Department of Physics, Moscow State University, Russia

5) Skobeltsyn Institute of Nuclear Physics, Moscow State Univ., Moscow, Russia

6) Swedish National Facility for Magnetoencephalography (NatMEG), Karolinska Institutet (KI)

7) NatMEG, Kl and A.A. Martinos Center for Biomedical Imaging, Mass. Gen. Hospital & Aalto Univ.
8) NatMEG, Kl & Aalto University

9) NatMEG, Kl & Radboud University
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High-T. SQUID

Plastic cylinder

Sl 6
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M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017

M. Xie et al., IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1-5, Jun. 2015'.S

MCZ2
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High-T. SQUID

Plastic cylinder
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Results

Standoff distance: 3 mm for high-T, and 20 mm for low-T
Dipole 1 depth under the phantom shell: 24 mm
Expected signal amplitude gain: ~3 times
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Pl ]
M. Xie, et al., IEEE Trans. Appl. Supercond., vol. 25, pp. 1601905, 2015 MC i
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Benchmarking on human subjects

A new benchmarking protocol is needed!

Challenges:

B The limited number of channels for new sensor technology
B Time consuming to map the full field topography

B Habituation and changes in the subject’s alertness during
measurement

B The location of sources is unknown - inverse problem
needs to be computed!

B To locate the source, full-head field distribution required
EEE TRANSACTIONS ON BIOMEDICAL ENGINEEHING, YOL B4, NO. & JUNE 2017 EmB

Benchmarking for On-Scalp MEG Sensors

Minshu Xie, Justin F. Schneiderman', Maxim L. Chukharkin, Alexei Kalabukhov, Bushra Riaz,
Daniel Lundgvist, Stephen Whitmarsh, Matti Hamaléinen, Veikko Jousmaki, Robert Qostenveld,
and Dag Winkler
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State-of-the-art vs.

bicrystal grain boundary high-T_ MEG system

Elekta Neuromag®
TRIUX

102 low-T_SQUID
magnetometers and
204 gradiometers

Capable of full head
mapping

Sensor-to-subject
distance ~20 mm

Sensitivity
1-5 fT/VHz

Magnetically shielded room
at KlI, Stockholm

M. Xie, et al., IEEE Trans. Appl. Supercond., vol. 25, pp. 1601905, 2015
M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017

High-T, MEG system
One or two channels
Single-layer bicrystal
high-T_SQUID

magnetometer

Sensor-to-subject
distance ~¥3 mm

Sensitivity
~40 fT/VHz

MC 2
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Benchmarking protocol

[7\ Brain signal

Brain signal

Somatosensory

: Auditory Evoked
@& Evoked Field (SEF)

Field (SEF) MG 2
e
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»

Benchmarking protocol

Z? Brain signal

Somatosensory

: Auditory Evoked
@ Evoked Field (SEF)

Field (SEF)


Presenter
Presentation Notes
The subjects were wearing an EEG cap throughout the experiments. All the electrode positions were registered. For each of the stimulation paradigm, we recorded with the low-Tc MEG and EEG. The recorded data were used to reconstruct the source dipole. 
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Equivalent
current dipole
(ECD) source

]? Brain signal

Auditory Evoked
Field (SEF)

Somatosensory ¢
@ Evoked Field (SEF)


Presenter
Presentation Notes
Then the positions of field extrema on the scalp can be projected. 
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Benchmarking pic

Z? Brain signal

Somatosensory

: Auditory Evoked
@ Evoked Field (SEF)

Field (SEF)


Presenter
Presentation Notes
With the reference of EEG electrodes, we can directly place the high-Tc MEG on the those position and measure the peak fields. Using this protocol, it is enough to measure at two positions instead of searching the full head, which saved a lot of time.
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»

Benchmarking protocol

[? Brain signal

Somatosensory

: Auditory Evoked
@ Evoked Field (SEF)

Field (SEF)

and Ranzachires


Presenter
Presentation Notes
With the reference of EEG electrodes, we can directly place the high-Tc MEG on the those position and measure the peak fields. Using this protocol, it is enough to measure at two positions instead of searching the full head, which saved a lot of time.


Results on AEF & SEF

B + | B | _
AEF* (25-30 mm) Ty gpected | AEF (25730 mm)
A0t Acort
! signal
& Deep source
200 s 200
= 0 ~ =T T Ot g
s L o & P
200 200 ="
i & Expected
400 migh— |' ' 4000 --;||-|_|' l1 i ;
T X T, 1.4 signal
-oof 1 Sl . -BUOf| L oncacily ]
ol 005 o 00s Al 015 ol 005 a 0eE a 015
Tirme (5] Tirmme (5]

Auditory evoked field after ~¥479 averages and 1-60 Hz band pass filtering

1uu:- i 1utc-
1000 1000 H'J'
SEF! (15-20 mm) | ?‘m SEF (15 ~20 mm) Lrw#-? '
&aD ' —U”"'"-& o1 500 . 1"L":%1 g .01
1 ". | .' 1
I E| } i i A N
E. i ; - L:_ 1 5 ¥ ! >:
S ofihA PN B ML S o Rl / : Shallow source
i H 11y H
500 ”I Expected ’I -500 | T
= e N 5 ——————————— = E e —
, il p I i ———huh T Expected / g _—-nun T w"q
signs oy - sgnal © | ™%
—10an : il —-10a0 : ot D,E',: ae
GOOS 0 0005 001 0075 002 0025 005 0035 GLO5 0 0005 001 0.015 002 OLZ5 O0E 0.035

Tirmg (s} Tirme (5}

Somatosensory evoked field after 616 averages and 1-500 Hz band pass filtering
More features due to close proximity? Worth further investigation with on-scalp MEG

MC
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M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017


Presenter
Presentation Notes
This protocol was verified by an excellent agreement of the prediction and measurement in the case of AEF. While for SEF, a biphasic activation for on-scalp was recorded instead of the typical monophasic activation for low-Tc, also the signal amplitude gain is much higher than predicted. Could be due to the SEF sources are shallower as compared to AEF sources. It is worth further investigation using on-scalp MEG.

AEF SEF full form emphasizing on auditory and somatosensory 

More features
Higher amplitude
Polarity
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Benchmarking: one high-Tc SQUID vs KI NatMEG
Elekta System

= Auditory evoked fields: deep sources, results as expected
= Somatosensory evoked fields: shallow sources, strange results
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Outline

= 7-channel high-T_ MEG system (KAW NeuroSQUID project)
= Direct feedback injection to minimize crosstalk
= Preliminary measurements
" Flux transformers
= High-T_nanoSQUIDs
= Single-layer device
= Flip-chip device

MCZ2
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NeuroSQUID
Nanoscale superconducting devices
for a closer look at brain activity

Vision: To make the most sensitive magnetometer capable of
operation above 77 K by employing superconducting quantum
effects at the nanoscale. Sensors based on this technology will lead
to a paradigm shift in neuroimaging. World-leading competences
and facilities will come together to explore the fundamental
possibilities of this new approach.

34 397 000 kronor (~ 4 M$ / ~460 000 000 JPY)
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/ Cryostat and \

Sensors

\_

NeuroSQUID

4 N

Crosstalk

ﬂext step: \
Flux transformers

. /

/ Head phantom \

measurements

-

/Next step:

Nanowire-based
SQUIDs
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NeuroSQUID
Cryostat

0.9 L liquid nitrogen reservoir

Vacuum + superinsulation

Thin, concave plastic window

Option to pump on nitrogen

Minimum sensor-to-room temperature distance = 1 mm
Thase = 80 K (70 K with pumping)

AT <100 mK

thog = 19 h (22 h with pumping)
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NeuroSQUID

Cryostat — outer part and inner guts

® Sapphire window on inner LN2 container

® 7 sapphire wedges on d.o. holding SQUIDs

" Dense, hexagonal pattern (2 mm edge-to-edge)
" Tilted towards center

® 3 x 3-channel electronics from Magnicon

100 mm
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. NeuroSQUID
Parts and pieces
.K....ir._.
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»

® High IR product: 120 -250 pV at 77 K =

NeuroSQUID
ngh T.SQUID magnetometer

" Single layer YBa,Cu;0,, (YBCO) thin film
magnetometer W|th directly coupled pickup loop

2 grain boundary Josephson junction dc SQUIDs
per chip

® 10* 10 mm?2STO bicrystal substrate — U by --

Cirain boundary

Rounded gold edges to contact from the side

MC2
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Presenter
Presentation Notes
The magnetometers were fabricated from epitaxial YBa2Cu3O7−x (YBCO) thin films grown by pulsed laser deposition (PLD) on 001-oriented 10 mm × 10 mm SrTiO3 (STO) bicrystal substrates [21] with a misorientation angle of 22.6°. The 200 nm thick YBCO films were patterned in a standard photolithography and argon ion etching process; the gold contact pads were magnetron sputtered and patterned with a lift-off process. 
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NeuroSQUID
Criteria for feedback

® On-scalp MEG = minimize standoff distance

Flux-locked loop = high enough coupling strengtt
Low noise

—

Low crosstalk - densely packed

Crosstalk C,g =

Paper: S. Ruffieux et al., Supercond. Sci. Technol. 30 (2017) 054006 MG:_"!
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Presentation Notes
We implemented two different on-chip feedback options. The first option is a superconducting coil with 20 turns patterned together with the pickup loop. The strips of the turns are 10 μm wide with a spacing of 4 μm, resulting in a coil with an outer diameter of 700μm. The coil is shown in figure 1(b). The second option is direct injection of current into the SQUID loop. We use the 4-wire scheme where two wires are used to bias and read out the SQUID (V+ and V–) and two for the feedback current (Φ+ and Φ−). 
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Presentation Notes
The induced crosstalk flux from one sensor to another should be below the flux noise level of the SQUID, which is typically around 10 μΦ0/Hz . For example, a magnetic field signal of magnitude 1 pT induces a flux signal of 200 μΦ0 for readout with a sensor with a transfer coefficient of 5 nT/Φ0 . If the crosstalk between the readout sensor and an adjacent sensor is below 5%, then less than 10 μΦ0 is induced in the sensor adjacent to the one in which the main signal is being read. Crosstalk levels below 5% hence seem acceptable, but this correlated noise may still be picked up when averaging is used (e.g., when MEG data is epoched and averaged over many trials) and should thus be minimized. Furthermore, in multichannel systems several sensors contribute to the crosstalk, meaning that the individual crosstalk levels should be well below 5%. 
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NeuroSQUID
2 Channel phantom measurements

Deep dipole (depth = 52.5 mm)
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NeuroSQUID
Preliminary measurements on alpha

- ® 5(7)SQUIDs
~ ® Alpha (8-12 Hz)
Eyes open — eyes closed

Time-frequency spectra
(using multitapers)

B Average over 5 trials




IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018.

CHA L M E Rs Invited presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan.

UNIVERSITY OF TECHNOLOGY

NeuroSQUID

Preliminary measurements on alpha
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® NeuroSQUID

Preliminary measurements — increase in alpha seen in
channel 2 & 3

Channel 2

, Channel 3 .
=~ x10
MEDmE _K 10 == 6
10 15
B1.5
1
0.5
-10 0 10 -10 0 10
eyesopen | eyes closed eyesopen | eyesclosed
30 seconds 30 seconds 30 seconds 30 seconds

MC2

Werosasra gy and Kancachres
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Presentation Notes
We had 30 sec eyes open, 30 sec eyes closed. The scale is 0-6x10^7 fT^2/Hz. We didn't manage to do any calibration since the system warmed up after the first measurements.�
Average of the time-frequency spectra from 5 successive trials - recorded in one run (each trial was 30 seconds eyes open then 30 seconds eyes closed).
For most channels, crosstalk is around 0.1 %.
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NeuroSQUID

Flux transformers
[ |

Increase effective area A

" Multi-layer device

FTvg picz 2016

Flip-chip device

4 MC2
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Flux transformers (for flip-chip) NeuroSQUID
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NeuroSQUID

Integrated flux transformer

® Single chip
" Increased coupling
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NeuroSQUID
Moving from bicrystal grain boundary to
nanowire junctions

Bicrystal grain boundary junctions

ey and Hanzachircs
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> NeuroSQUID
Motivation: Previous work™ on high-T, nano-SQUIDs
10° 3

® Low flux noise at 8 K — what about at 77 K?

® Large 1/f noise — what about under bias-reversal condition?

® Small SQUID loop size — can it be used as a magnetometer?

® Scalable junction technology — potential for multi-channel MEG?

|
*) R. Arpaia, et al., Appl. Phys. Lett., vol.104, 2014 Mpmﬁ
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Presentation Notes
We first studied the approach with pickup loop. We know that the effective area can be increased by increasing the pickup loop dimension or the mutual inductance. The main difference from the bicrystal grain boundary SQUID is that the junction inductances are much higher due to the high kinetic inductance. To get a reasonable coupling, we end up with a higher SQUID inductance and therefore lower modulation depth and higher flux noise.
° Small SQUID loop sizes → coupling approaches needed
° High kinetic inductances in the nanowire junctions  𝐿 𝐽  → smaller mutual inductance  𝐿 𝑚 
° Higher  𝐿 𝑆𝑄  → lower modulation depth ∆𝑉 and higher flux noise  𝑆 𝜙 1/2 

For the approach with flux transformer, the SQUID inductance can be lower. However, a good inductive coupling between the flux transformer input coil and the SQUID washer relies on the washer focusing efficiency. In the case of 50 nm thick washer, this efficiency is rather poor as compared to a thicker washer in the case of bicrystal SQUID.
° SQUID inductance can be lower
° Small SQUID loop size → flux focusing washer is required to increase mutual inductance, M1
° Thin SQUID washer thickness (50 nm, same as nanowires) → much smaller flux focusing and coupling efficiency  𝑘 𝑀1 

° A combination of approach I and II
° Flip-chip FT is inductively coupled to a washer-type pickup loop
° Better matching between the inner loop of the flux transformer input coil and the washer-type pickup loop of the SQUID
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» NeuroSQUID

Simulation toolbox for numerically calculating the
inductances and coupling
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® Principle: Solving London and Maxwell Egs with the concept of stream function

Minshu Xie: PhD thesis 2017 MC'_2
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Presentation Notes
To estimate the contribution of kinetic inductance, we also developed simulation toolbox for numerically calculating the inductances. It works for both single- and multi-layer devices

Works for both single- and multi-layer devices
Can handle complex geometries
Can separate kinetic term and geometric term
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Noise at 77 K without Au top layer
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 '_ We still have to
CONCLUSIONS struggle a bit to get

further down the
road...

HTS vs. LTS MEG
Benchmarking has been made with phantoms and humans
HTS MEG reveals strange theta at occipital region
HTS MEG shows larger than expected signals for shallow sources
HTS MEG shows more complex signals

A 7-channel high-Tc SQUID-based MEG system is being built:
Crosstalk between two channels caused by feedback has been studied

Phantom and human subjects measured
System level benchmarking (source localization) to be carried out

Low-noise flux-transformers for
Flip-chip and possibly integrated devices

To improve the sensitivity of nanowire-based high-Tc SQUID:
Thicker washer in Ketchen-type coupling (coupling coeff. k: 0.05 - 0.7)
Integrated devices (smaller separation)

Projected sensitivity 10 fT/VHz for Ketchen-type coupling
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The scientific aim of the NatMEG unit is to establish a national core-facility
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Multichannel on-scalp MEG based on high-Tc SQUID magnetometers

D. Winkler, J.F. Schneiderman, A. Kalabukhov, M. Chukharkin, M. Xie, S. Ruffieux, C. Pfeiffer.

 

Recent development of high-Tc SQUID magnetoencephalography (MEG) has shown the potential of the technique both as a possible replacement for the traditional low-Tc systems [1-5] and for increased information capacity from the close proximity to the brain [6]. SQUID magnetometers made from single layer high-Tc superconductors usually have an order of magnitude or more high1er noise than their multilayer low-Tc counterparts. However, for MEG applications, the simpler cryogenic requirements make it possible to decrease the sensor-to-head distance from 20 mm to approximately 1 mm, retaining the signal-to-noise ratio. Furthermore, higher spatial resolution could be obtained and higher moments of the sources could be resolved from near-field measurements.  Here, we report on benchmarking of high-Tc vs. low-Tc MEG and on the development of a multichannel high-Tc MEG system. The system is configured with a densely-packed set of seven 8.6 mm x 9.2 mm high-Tc SQUID magnetometers positioned in a slightly concave hexagonal pattern on a sapphire window connecting thermally to a liquid nitrogen bath. A method of direct feedback injection to the SQUID loops was chosen to minimize crosstalk between the sensors. To improve the field sensitivity, we have developed a new method to produce high-Tc flux transformers for flip-chip arrangements for the next generation MEG system. Finally, we are investigating the possibility to use high-Tc nano-wire based SQUIDs as magnetometers for MEG in future systems.
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The human brain

Most complex organ known

~1011 neurons and ~1015 synapses

The number of combinations exceeds
the number of particles in the universe! 

Cognition and consciousness

Understanding the brain

Philosophical questions

Brain disorders a major burden for the society

In Europe, direct and indirect expenses of brain disorders about 800 billion euros per year*

Human suffering

https://www.nature.com/scitable/blog/brain-metrics/are_there_really_as_many

Nucleus

Axon

Dendrite

Synapse

*) Olesen et al., 2012
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How to interrogate the brain

Passive and safe, especially important for infants

High temporal resolution of ~ms

Reasonable spatial resolution of ~mm

Spectral content of the signals

Access to mechanisms and physiological interpretation

EEG

IEEG

MEG

MRS

fMRI

PET

SPECT



EEG: Electro- encephalography

IEEG: Invasive Electroencephalography

MEG: Magnetoencephalography

MRS: Magnetic Resonance Spectroscopy

fMRI: functional MRI

SPECT: Single Photon Emission Cranial
            Tomography

PET: Positron Emission Tomography

invasiveness

Benefits of MEG:



fMRI: high spatial resolution but poor temporal resolution

PET: radioactive tracers

EEG: electrical contact
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The Brain
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Magneto- and electroencephalography (MEG/EEG)
– measuring electric brain activity

Currents in active neurons...



MEG = measuring the magnetic fields





... give rise to small electric voltages and weak magnetic fields on the surface of the head

EEG = measuring the voltages on the scalp



Parkkonen, 2009

Courtesy by Lauri Parkkonen

A single neuron: B ~ 0.01 fT

10 000 synchronous and

parallel neurons: B ~100 fT
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Applications of MEG

Clinical use

Epilepsy diagnostics

Localization of eloquent brain regions before resections

Clinical research (e.g.)

Predictive diagnostics of Alzheimer’s disease

Personalized stroke rehabilitation

Assessing brain trauma

Neuroscientific research

Mäkelä, Paetau & Parkkonen, SUST 2016

Courtesy by Lauri Parkkonen
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Current MEG system’s issue: Sensors are far from the brain!

MEG with superconducting LTS-SQUID sensors – LHe cooling:

		non-adaptable sensor helmet

		large distance from brain to sensors

		limited spatial resolution









Distance to brain (cm)







Courtesy by Lauri Parkkonen

Iivanainen, Stenroos, Parkkonen (HBM 2013)
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If the sensors could be on the scalp...







Distance to brain (cm)

Distance to brain surface would reduce to less than half in adults. Even larger change in children.

On-scalp sensors

SQUIDs





Iivanainen, Stenroos, Parkkonen (HBM 2013)

Courtesy by Lauri Parkkonen
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Why on-scalp MEG?

Closer to the source

Larger signals

Can possibly get the same SNR with less sensitive sensors

Higher spatial resolution

Higher information capacity

Resolve more complicated sources? 

Avoid LHe (finite resource, ~500 kSEK/yr)

Can use

High-Tc SQUIDs at LN2 or

(OPMs heated above RT)

Simpler cryogenics for high-Tc

Flexible arrays

Cheaper systems
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Focal MEG sensors in our case:
HTS dc-SQUIDS based on bicrystal junctions

Weak links: bicrystal substrate → grain boundary → epitaxial YBCO film → microbridges crossing the grain boudary



D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990)
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High-Tc SQUID magnetometers for MEG in an ILK dewar
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Graduate student & SQUID & FFT







CURRENT





STO

YBCO

SQUIDs













Hans Berger and early EEG recordings from the 1930s

Berger waves/phenomena
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Graduate student & SQUID & FFT







CURRENT





STO

YBCO

SQUIDs
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EEG recordings from 1930s











Hans Berger and early EEG recordings from the 1930s

Berger waves/phenomena
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Our first high-Tc SQUID-based MEG recordings

Alpha modulation as expected

Something strange in the theta band

Atypical of visual system

Higher power than alpha





Alpha and theta bands…
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2-channel high-Tc MEG system
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Two-channel recordings: visual (O2) and sensorimotor (C4) alpha





Öisjöen et al, High-Tc superconducting quantum interference device..., App. Phys. Lett. 2012, DOI:10.1063/1.3698152



C4

O2
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Work done in collaboration with NatMEG @ KI

Minshu Xie,1 Justin F. Schneiderman,2,3 Alexei Kalabukhov,1,5 Maxim L. Chukharkin,1,4 Silvia Ruffieux,1 Christoph Pfeiffer,1 Bushra Riaz, 2,3 Daniel Lundqvist,6 Stephen Whitmarsh,6 Matti Hämäläinen,7 Veikko Jousmäki,8 Robert Oostenveld9, Dag Winkler1 





1) Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden

2) MedTech West

3) Institute of Neuroscience and Physiology , SA/GU, Gothenburg, Sweden

4) Department of Physics, Moscow State University, Russia

5) Skobeltsyn Institute of Nuclear Physics, Moscow State Univ., Moscow, Russia

6) Swedish National Facility for Magnetoencephalography (NatMEG), Karolinska Institutet (KI)

7) NatMEG, KI and A.A. Martinos Center for Biomedical Imaging, Mass. Gen. Hospital & Aalto Univ.

8) NatMEG, KI & Aalto University

9) NatMEG, KI & Radboud University
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Benchmarking on phantoms (courtesy of Elekta)

Plastic cylinder





























High-Tc SQUID



















77 K Al2O3

liquid

nitrogen

vacuum



200 µm Al2O3 window





Phantom









Glass-fiber reinforced

plastic (GFRP)

M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017



M. Xie et al., IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5, Jun. 2015.
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Benchmarking on phantoms (courtesy of Elekta)

Plastic cylinder





























High-Tc SQUID



















77 K Al2O3

liquid

nitrogen

vacuum



200 µm Al2O3 window





Phantom





Glass-fiber reinforced

plastic (GFRP)

M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017



M. Xie et al., IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5, Jun. 2015.
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Results 

M. Xie, et al., IEEE Trans. Appl. Supercond., vol. 25, pp. 1601905, 2015



Dipole 1

50 Hz low pass

100 averages

Standoff distance: 3 mm for high-Tc and 20 mm for low-Tc

Dipole 1 depth under the phantom shell: 24 mm

Expected signal amplitude gain: ~3 times
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Benchmarking on human subjects

Challenges:

The limited number of channels for new sensor technology

Time consuming to map the full field topography

Habituation and changes in the subject’s alertness during measurement

The location of sources is unknown - inverse problem needs to be computed!

To locate the source, full-head field distribution required



A new benchmarking protocol is needed!
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State-of-the-art vs.
bicrystal grain boundary high-Tc MEG system

Elekta Neuromag® TRIUX



102 low-Tc SQUID magnetometers and 204 gradiometers



Capable of full head mapping



Sensor-to-subject distance ~20 mm



Sensitivity

1–5 fT/√Hz

High-Tc MEG system



One or two channels

 

Single-layer bicrystal high-Tc SQUID magnetometer



Sensor-to-subject distance ~3 mm



Sensitivity

~40 fT/√Hz 

Magnetically shielded room at KI, Stockholm

M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017

M. Xie, et al., IEEE Trans. Appl. Supercond., vol. 25, pp. 1601905, 2015
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Benchmarking protocol































Somatosensory Evoked Field (SEF)



Brain signal









Auditory Evoked Field (SEF)





Brain signal
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Benchmarking protocol







Elekta system





















































EEG cap



































Somatosensory Evoked Field (SEF)













Auditory Evoked Field (SEF)





Brain signal
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The subjects were wearing an EEG cap throughout the experiments. All the electrode positions were registered. For each of the stimulation paradigm, we recorded with the low-Tc MEG and EEG. The recorded data were used to reconstruct the source dipole. 
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Benchmarking protocol





Elekta system





















































EEG cap













































Somatosensory Evoked Field (SEF)















Auditory Evoked Field (SEF)





Brain signal



Equivalent current dipole (ECD) source
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Then the positions of field extrema on the scalp can be projected. 
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Benchmarking protocol





Elekta system





















































EEG cap





































































Somatosensory Evoked Field (SEF)















Auditory Evoked Field (SEF)





Brain signal
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With the reference of EEG electrodes, we can directly place the high-Tc MEG on the those position and measure the peak fields. Using this protocol, it is enough to measure at two positions instead of searching the full head, which saved a lot of time.
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Benchmarking protocol























































EEG cap











































Auditory Evoked Field (SEF)



























Somatosensory Evoked Field (SEF)









Brain signal
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With the reference of EEG electrodes, we can directly place the high-Tc MEG on the those position and measure the peak fields. Using this protocol, it is enough to measure at two positions instead of searching the full head, which saved a lot of time.
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Results on AEF & SEF

Auditory evoked field after ~479 averages and 1–60 Hz band pass filtering

Somatosensory evoked field after ~616 averages and 1–500 Hz band pass filtering

More features due to close proximity? Worth further investigation with on-scalp MEG

AEF+ (25–30 mm)

AEF– (25–30 mm)

SEF+ (15–20 mm)

SEF– (15–20 mm)

Shallow source

Deep source

M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017

Expected

signal

Expected

signal

Expected

signal

Expected

signal
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This protocol was verified by an excellent agreement of the prediction and measurement in the case of AEF. While for SEF, a biphasic activation for on-scalp was recorded instead of the typical monophasic activation for low-Tc, also the signal amplitude gain is much higher than predicted. Could be due to the SEF sources are shallower as compared to AEF sources. It is worth further investigation using on-scalp MEG.



AEF SEF full form emphasizing on auditory and somatosensory 



More features

Higher amplitude

Polarity
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Benchmarking: one high-Tc SQUID vs KI NatMEG 
Elekta System





Auditory evoked fields: deep sources, results as expected

Somatosensory evoked fields: shallow sources, strange results

Gos ~ 3.4 – 4.2

Gos ~ 3.4 – 4.2

Field (T)

Time (s)

Time (s)
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NeuroSQUID
Nanoscale superconducting devices for a closer look at brain activity

Vision: To make the most sensitive magnetometer capable of operation above 77 K by employing superconducting quantum effects at the nanoscale. Sensors based on this technology will lead to a paradigm shift in neuroimaging. World-leading competences and facilities will come together to explore the fundamental possibilities of this new approach. 

34 397 000 kronor  (~ 4 M$ / ~460 000 000 JPY)
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Head phantom measurements

Flux transformers

Nanowire-based SQUIDs

Cryostat and sensors

Crosstalk













Preliminary alpha

Next step:

Next step:

N e u r o S Q U I D
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Cryostat

0.9 L liquid nitrogen reservoir

Vacuum + superinsulation

Thin, concave plastic window

Option to pump on nitrogen

Minimum sensor-to-room temperature distance ≈ 1 mm

Tbase = 80 K (70 K with pumping)

ΔT < 100 mK

thold = 19 h (22 h with pumping)

N e u r o S Q U I D
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Cryostat – outer part and inner guts



Sapphire window on inner LN2 container

7 sapphire wedges on d.o. holding SQUIDs

Dense, hexagonal pattern (2 mm edge-to-edge)

Tilted towards center

3 x 3-channel electronics from Magnicon



100 mm



N e u r o S Q U I D
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Parts and pieces	





77K

LN2

~9 mm





20 cm

N e u r o S Q U I D
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High-Tc SQUID magnetometer



Single layer YBa2Cu3O7-x (YBCO) thin film magnetometer with directly coupled pickup loop

10 ˣ 10 mm2 STO bicrystal substrate

2 grain boundary Josephson junction dc SQUIDs per chip

High ICRn product: 120 – 250 µV at 77 K

Rounded gold edges to contact from the side





N e u r o S Q U I D
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The magnetometers were fabricated from epitaxial YBa2Cu3O7−x (YBCO) thin films grown by pulsed laser deposition (PLD) on 001-oriented 10 mm × 10 mm SrTiO3 (STO) bicrystal substrates [21] with a misorientation angle of 22.6°. The 200 nm thick YBCO films were patterned in a standard photolithography and argon ion etching process; the gold contact pads were magnetron sputtered and patterned with a lift-off process. 
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Head phantom measurements

Flux transformers

Nanowire-based SQUIDs

Cryostat and sensors

Crosstalk













Preliminary alpha

Next step:

Next step:

N e u r o S Q U I D
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DC SQUID readout

Feedback

Φf = - Φ





Φ



Φ/Φ0





5 mm

Flux-locked loop

N e u r o S Q U I D
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Criteria for feedback

On-scalp MEG → minimize standoff distance 

Flux-locked loop → high enough coupling strength 

Low noise

Low crosstalk → densely packed

















10 mm

Paper: S. Ruffieux et al., Supercond. Sci. Technol. 30 (2017) 054006



























ΦBB

ΦAB

Exciting

SQUID B

Sensing

SQUID A

ΦBB

ΦAB

Crosstalk CAB = 

N e u r o S Q U I D
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Feedback solutions



Superconducting coil

Direct injection

Feedback current

Feedback current
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We implemented two different on-chip feedback options. The first option is a superconducting coil with 20 turns patterned together with the pickup loop. The strips of the turns are 10 μm wide with a spacing of 4 μm, resulting in a coil with an outer diameter of 700μm. The coil is shown in figure 1(b). The second option is direct injection of current into the SQUID loop. We use the 4-wire scheme where two wires are used to bias and read out the SQUID (V+ and V–) and two for the feedback current (Φ+ and Φ−). 
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Crosstalk









N e u r o S Q U I D
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The induced crosstalk flux from one sensor to another should be below the flux noise level of the SQUID, which is typically around 10 μΦ0/Hz . For example, a magnetic field signal of magnitude 1 pT induces a flux signal of 200 μΦ0 for readout with a sensor with a transfer coefficient of 5 nT/Φ0 . If the crosstalk between the readout sensor and an adjacent sensor is below 5%, then less than 10 μΦ0 is induced in the sensor adjacent to the one in which the main signal is being read. Crosstalk levels below 5% hence seem acceptable, but this correlated noise may still be picked up when averaging is used (e.g., when MEG data is epoched and averaged over many trials) and should thus be minimized. Furthermore, in multichannel systems several sensors contribute to the crosstalk, meaning that the individual crosstalk levels should be well below 5%. 
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Head phantom measurements

Flux transformers

Nanowire-based SQUIDs

Cryostat and sensors

Crosstalk













Preliminary alpha

Next step:

Next step:

N e u r o S Q U I D
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2 Channel phantom measurements













N e u r o S Q U I D
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Preliminary measurements on alpha

5 (7) SQUIDs

Alpha (8-12 Hz) 

Eyes open – eyes closed

Time-frequency spectra 
(using multitapers)

Average over 5 trials



N e u r o S Q U I D
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Preliminary measurements on alpha



















ch 1

ch 2

ch 3

ch 5

ch 7

ch 6

ch 4

N e u r o S Q U I D
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Preliminary measurements – increase in alpha seen in channel 2 & 3





Channel 2

Channel 3

eyes open     |     eyes closed

eyes open     |     eyes closed

30 seconds

30 seconds

30 seconds

30 seconds

N e u r o S Q U I D
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We had 30 sec eyes open, 30 sec eyes closed. The scale is 0-6x10^7 fT^2/Hz. We didn't manage to do any calibration since the system warmed up after the first measurements.


Average of the time-frequency spectra from 5 successive trials - recorded in one run (each trial was 30 seconds eyes open then 30 seconds eyes closed).

For most channels, crosstalk is around 0.1 %.
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Head phantom measurements

Flux transformers

Nanowire-based SQUIDs

Cryostat and sensors

Crosstalk













Preliminary alpha

Next step:

Next step:
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Flux transformers

Increase effective area Aeff 

Multi-layer device







Flip-chip device













N e u r o S Q U I D
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Flux transformers (for flip-chip)



Single-layer



Multi-layer FT flip-chip

Easy to fabricate 

Limited effective area / sensitivity

Better effective area / sensitivity

Challenging fabrication





N e u r o S Q U I D
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Integrated flux transformer



Single chip

Increased coupling



N e u r o S Q U I D
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Head phantom measurements

Flux transformers

Nanowire-based SQUIDs

Cryostat and sensors

Crosstalk
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Moving from bicrystal grain boundary to
nanowire junctions
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2 µm





Bicrystal grain boundary junctions

Nanowire junctions
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Motivation: Previous work* on high-Tc nano-SQUIDs

*) R. Arpaia, et al., Appl. Phys. Lett., vol.104, 2014

Low flux noise at 8 K → what about at 77 K?

Large 1/f noise → what about under bias-reversal condition?

Small SQUID loop size → can it be used as a magnetometer?

Scalable junction technology → potential for multi-channel MEG?

N e u r o S Q U I D
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Three approaches for coupling

















Nanowire SQUID (NSQ):

N e u r o S Q U I D

Approach I

Approach II:

with a flux transformer









10 mm



10 mm

M. Chukharkin, et al., IEEE Trans. Appl. Supercond., vol. 23, pp. 1602704, 2013



Approach III: A two-level coupling method



M. Xie, et al., Supercond. Sci. Technol., vol. 30, pp. 115014, 2017



Flip-chip separation ~3 µm



 = 0.09 mm2

 = 55 µΦ0/√Hz

 = 1200 fT/√Hz

 = 0.16 mm2

 = 35 µΦ0/√Hz

 = 480 fT/√Hz

 = 0.46 mm2

 = 55 µΦ0/√Hz

 = 240 fT/√Hz
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We first studied the approach with pickup loop. We know that the effective area can be increased by increasing the pickup loop dimension or the mutual inductance. The main difference from the bicrystal grain boundary SQUID is that the junction inductances are much higher due to the high kinetic inductance. To get a reasonable coupling, we end up with a higher SQUID inductance and therefore lower modulation depth and higher flux noise.

° Small SQUID loop sizes → coupling approaches needed

° High kinetic inductances in the nanowire junctions  → smaller mutual inductance 

° Higher  → lower modulation depth  and higher flux noise 



For the approach with flux transformer, the SQUID inductance can be lower. However, a good inductive coupling between the flux transformer input coil and the SQUID washer relies on the washer focusing efficiency. In the case of 50 nm thick washer, this efficiency is rather poor as compared to a thicker washer in the case of bicrystal SQUID.

° SQUID inductance can be lower

° Small SQUID loop size → flux focusing washer is required to increase mutual inductance, M1

° Thin SQUID washer thickness (50 nm, same as nanowires) → much smaller flux focusing and coupling efficiency 



° A combination of approach I and II

° Flip-chip FT is inductively coupled to a washer-type pickup loop

° Better matching between the inner loop of the flux transformer input coil and the washer-type pickup loop of the SQUID
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Simulation toolbox for numerically calculating the inductances and coupling







Software: AutoCAD and COMSOL Multiphysics

Principle: Solving London and Maxwell Eqs with the concept of stream function

N e u r o S Q U I D

Minshu Xie: PhD thesis 2017
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To estimate the contribution of kinetic inductance, we also developed simulation toolbox for numerically calculating the inductances. It works for both single- and multi-layer devices



Works for both single- and multi-layer devices

Can handle complex geometries

Can separate kinetic term and geometric term



61







50 nm YBCO:

no Au capping

no pick up loop

Vf~ 15 mV/f0

Amp: Sv1/2 ~ 0.4 nV/Hz1/2

Expected field noise taking achieved effective area Aeff ~ 0.1 mm2:  Sf1/2 ~ 500 fT/Hz1/2



For HTS MEG applications: Sf1/2 < 50 fT/Hz1/2 needed



SQUID electronics with lower input noise (Cryoton)





Noise at 77 K without Au top layer

N e u r o S Q U I D
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Head phantom measurements

Flux transformers

Nanowire-based SQUIDs

Cryostat and sensors

Crosstalk













Preliminary alpha

Next step:

Next step:
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We still have to struggle a bit to get further down the road…

CONCLUSIONS

HTS vs. LTS MEG

Benchmarking has been made with phantoms and humans

HTS MEG reveals strange theta at occipital region

HTS MEG shows larger than expected signals for shallow sources

HTS MEG shows more complex signals

A 7-channel high-Tc SQUID-based MEG system is being built:

Crosstalk between two channels caused by feedback has been studied

Phantom and human subjects measured

System level benchmarking (source localization) to be carried out

Low-noise flux-transformers for

Flip-chip and possibly integrated devices

To improve the sensitivity of nanowire-based high-Tc SQUID:

Thicker washer in Ketchen-type coupling (coupling coeff. k: 0.05 → 0.7)

Integrated devices (smaller separation)

Projected sensitivity 10 fT/√Hz for Ketchen-type coupling



x 3
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The Chalmers SQUID group
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¿QUESTIONS?

Thanks!
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