

Activities of Chinese National Technical Committee on Superconductivity

Jie Li 2015.11.25, ACASC 15

Present work (domestic, international)

- 1. Standardization work on Superconductivity in China (ppt), Yanwei MA (IEE, CAS) in Tower Hall Funabori, Tokyo, 2013;
- 2. Introduction to Chinese National Technical Committee on Superconductivity (in Chinese), Dongning Zheng, 2013
- 3. PPTs in the 13th national conference on superconductivity, Suzhou, 2015, by Cheng ZENG (UEST), Kexi Xu (SHU), Chuangbing CAI (SHU), et al.

Organization

SAC/TC265

National Technical Committee on Superconductivity

Chairperson: Prof Yang, Qiangsheng (IOP) Deputy Chairpersons: Zheng, Dongning (IOP) Xiao, Ling (GRINM)

Secretary: Liu, Yiping

Advisors: Gan, Zizhao; Zhao, Zhongxian; Yang, Guozhen; Zhou, Lian

Formally established in Aug. 2003 The secretariat is in the Inst. Of Phys., CAS

WG of large scale and power applications in April 2014 Convener: Wang, Qiuliang (IEE)

WG of small scale and electronic applications in August 2014

Organization

SAC/TC265 Member Institutions

- Institute of Physics, CAS
- Shanghai Institute of Microsystem and Information Technology (SIMIT)
- Institute of Electrical Engineering, CAS
- Beijing General Research Institute for Non-Ferrous Metals
- Northwestern Research Institute for Non-Ferrous Metals
 GRINM
- National Institute of Metrology
- Changsha Mineral Institute
- Peking University
- Tsinghua University
- Nanjing University
- University of Electronic Science and Technology
- University of Science and Technology of China
- Western Superconducting Technologies Co. Ltd
- China Electric Power Research Institute
- North China Electric Power University
- Innova Superconductor Technology

nno

Organization

Present work (domestic)

Present work (domestic)

16 national standards on Superconductivity published

 $\mathcal{\Sigma}$

Publications issued by SAC/TC265

	Standard No	Title	Execute Date	IEC No
1	GB/T 17711- 1999	钇钡铜氧(123相)超导薄膜临界温度Tc的直流电阻试验方法 The DC electric resistance test method for the critical temperature Tc of a YBa ₂ Cu ₃ 0 _{7-d} superconducting thin film	1999-10-01	/
2	GB/T 18502- 2001	银或银合金包套铋系氧化物超导体直流临界电流的测定 The DC critical current of Ag- and/or Ag alloy-sheathed bismuthal oxide superconductor	2002-05-01	IEC 61788-3
3	GB/T 13811- 2003	电工术语 超导电性 International Electrotechnical Vocabulary : Superconductivity	2003-06-01	IEC 60050-815: 2000
4	GB/T 21115- 2007	块状氧化物超导体磁浮力的测量 Measurement for levitation force of bulk oxide superconductor	2007-12-01	/
5	GB/T 21227- 2007	交流损耗测量: Cu/Nb-Ti 多丝复合线磁滞损耗的磁强计测 量法 AC loss measurements - Magnetometer methods for hysteresis loss in superconducting multifilamentary composites	2008-05-01	IEC 61788-13: 2003
6	GB/T 21546- 2008	铌钛复合超导体的直流临界电流测量 Critical current measurement - DC critical current of Nb-Ti composite superconductors	2008-11-01	IEC 61788-1: 2006

Publications issued by SAC/TC265 (cont.)

	Standard No	Title	Execute Date	IEC/IS No
7	GB/T 22586 - 2008	高温超导薄膜微波表面电阻测试 Measurements of surface resistance of high temperature superconductor thin films at microwave frequencies	2009-05-01	IEC 61788-7: 2006
8	GB/T 22587- 2008	基体与超导体体积比测量-Cu/NbTi复合超导体中铜与超导体的 体积比测试方法 Matrix to superconductor volume ratio measurement - Copper to superconductor volume ratio of Cu/Nb-Ti composite superconducting wires	2009-05-01	IEC 61788-5: 2000 (MOD)
9	GB/T 25080- 2010	超导用Nb-Ti合金棒坯,粗棒和细棒 Niobium-Titanium Alloy Billets, Bar, and Rod for Superconducting Applications	2011-04-01	ASTM B884- 2005 (MOD)
10	GB/T 25897- 2010	剩余电阻比测量-铜/铌-钛复合超导体的剩余电阻比 Superconductivity: Residual resistance ratio measurement of Nb- Ti composite superconductors	2011-05-01	IEC 61788-4: 2007
11	GB/T 28871- 2012	铌三锡(Nb ₃ Sn)复合超导体的直流临界电流测量 Critical current measurement - DC critical current of Nb ₃ Sn composite superconductors	2013-02-15	IEC 61788-2: 2006

Publications issued by SAC/TC265 (cont.)

	Standard No	Title	Execute Date	IEC No
12	GB/T 30109- 2013	交流损耗测量 - 液氦温度下横向交变磁场中圆形截面超导线总 交流损耗的探测线圈测量法 AC loss measurements - Total AC loss measurement of round superconducting wires exposed to a transverse alternating magnetic field at liquid helium temperature by a pickup coil method	2014-05-15	IEC 61788-8: 2010
13	GB/T 30537- 2014	块状高温超导体的测量-大晶粒氧化物超导体的俘获磁通密度 Measurements for bulk high temperature superconductors - Trapped flux density of large grain oxide superconductors	2014-11-01	IEC 61788-9: 2005
14	GB/T 31522-2015	基体与超导体体积比测试 – Nb ₃ Sn复合超导线铜与非铜体积比 Matrix to superconductor volume ratio measurement - Copper to non-copper volume ratio of Nb ₃ Sn composite superconducting wires	2015-12-01	IEC 61788-12: 2013
15	GB/T 31527-2015	力学性能测量 – NbTi/Cu复合超导线室温拉伸试验方法 Mechanical properties measurement - Room temperature tensile test of Cu/Nb-Ti composite superconductors	2015-12-01	IEC 61788-6: 2011
16	GB/T 31780-2015	临界温度测量 – 电阻法测复合超导体临界温度 Critical temperature measurement - Critical temperature of composite superconductors by a resistance method	2015-02-01	IEC 61788-10: 2006

On-going projects of China national standards

No	Project No (IEC)	Title	Status
1	20132581-T-491 (IEC 61788-14 Ed.1.0)	超导电力设备—对超导电力设备用电流引线特性测试的基本要 求(WANG Qiuliang in IEE, CAS) Superconducting power devices - General requirements for characteristic tests of current leads designed for powering superconducting devices	Application: Oct. 11, 2012 Approved: April 10, 2013 Current status: Exp. work
2	20132582-T-491 (IEC 61788-15 Ed.1.0)	电性能测试—微波频率下超导薄膜的本征表面阻抗 (CHEN Jian in NJU) Electronic characteristic measurements - Intrinsic surface impedance of superconductor films at microwave frequencies	Application: Oct. 11, 2012 Approved: April 10, 2013 Current status: Exp. work
3	20142502-T-491 (IEC 61788-7 Ed.2.0) GB/T 22586 Ed2	电子学特性测量—超导体在微波频率下的表面电阻 (ZENG Cheng in UESTC) Electronic characteristic measurements - Surface resistance of superconductors at microwave frequencies	Application: Aug. 20, 2014 Approved: Dec. 23, 2014 Current status: WG started
4	20142503-T-491 (IEC 61788-18 Ed.1.0)	力学性能测量—银和/或银合金包套Bi-2223和Bi-2212复合超导体 室温拉伸试验方法 (CHENG Junsheng in IEE, CAS) Mechanical properties measurement - Room temperature tensile test of Ag- and/or Ag alloy-sheathed Bi-2223 and Bi-2212 composite superconductors	Application: Aug. 20, 2014 Approved: Dec. 23, 2014 Current status: WG started
5	20151364-T-491 (IEC 61788-5:Ed. 2.0) GB/T 22587 <mark>Ed2</mark>	基体与超导体体积比测量—铜-铌鈦(Cu/Nb-Ti)复合超导体铜-超[体积]比的测量 (FENG Ran in WST) Matrix to superconductor volume ratio measurement - Copper to superconductor volume ratio of Cu/Nb-Ti composite superconducting wires	Application: Jan. 23, 2015; Approved: July 31, 2015; Current status: WG started

On-going projects of China national standards (cont.)

No	Project No (IEC)	Title	Status
6	20151365-T-491 (IEC 61788-3 Ed.2.0) GB/T 18502 <mark>Ed2</mark>	临界电流测量—银和/或银合金包套Bi-2212和Bi-2223氧化物超 导体的直流临界电流 (ZHANG Guomin in IEE, CAS) Critical current measurement - DC critical current of Ag- and/or Ag alloy-sheathed Bi-2212 and Bi-2223 oxide superconductor	Application: Jan. 23, 2015; Approved: July 31, 2015; Current status: WG started
7	(IEC 61788-16: 2013)	电性能测试 微波频率下超导体表面电阻随功率的变化(ZHAO Xinjie in TJU) Electronic characteristic measurements - Power-dependent surface resistance of superconductors at microwave frequencies	Application: June 17, 2015; Public comment: Sept. 24, 2015;
8	(IEC 61788-17: 2013)	电性能测试大面积超导薄膜的局域临界电流密度及其分布 (CAI Chuanbing in SHU) Electronic characteristic measurements - Local critical current density and its distribution in large-area superconducting films	Application: June 17, 2015; Public comment: Sept. 24, 2015;

Standards issued by IEC/TC90 are all numbered as

IEC 61788-XX

(11) 12 13 14 15 16 17 18 19 20 21 + 2

Red: finished; Blue: on-going; Black: no yet started

Standardized Measurement Setups

- Even for standards identically adopted from IEC standards by translation (IDT), standardized measurement devices are always established, and careful experiments are carried out;
- For independently developed standards, and standards adopted from international standards with modification (MOD), round robin tests are required to be carried out.

GB/T 30537-2014 (SHU) Trapped flux density of large grain oxide superconductors

 \sum

IEC-61788-9 (IDT)

Control system

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), April 2016. This plenary presentation A29 was given at ACASC 2015 (The 8th Asian Conference on Applied Superconductivity and Cryogenics).

Field cooled;

 $H_m = 2.0 \text{ T}; \text{ T} = 77 \text{ K}$

d=1.2 mm;

Experiment dates:

SHU: 2013-04-02; 2013-06-10; IFW: 2014-01-06

	B _{max} (T)	B _{max} (T)	(B _{max} -B _{max}) ²	S (T)	COV (%)
BJ- YBCO-30	0.683 0.674 <mark>0.66</mark>	0.674	0.000081 0.000016 0.0002	0.012	<1.78
SHU- YBCO-25A	0.572 0.564 0.57	0.569	0.000009 0.000025 0.000001	0.004	<0.70
SHU- YBCO-25B	0.565 0.542 0.55	0.552	0.00017 0.00010 0.000004	0.012	<2.2

GB/T 22586 ed.2, in process (UESTC)

IEC-61788-7(MOD)

Surface resistance of superconductors at microwave frequencies

The standard two-resonator method (STR)

- Rs of the films, and ε_r and tanδ of the sapphire rod obtained.
- The result is the average R_s of two HTS thin films;
- Rs at a single frequency measured;
- Two temperature cycles;

Present work (domestic)

Improved image type sapphire resonator method (ISR)

ICTD 2009, doi:10.1109/CAS-ICTD.2009.4960774; Chinese Sci Bull, doi: 10.1007/s11434-009-0639-8

Present work (domestic)

Round Robin Test

Rs of Au plates: 17.16 mW

Samples (#1, #2, #3, #4):

f 50.8mm YBCO/LAO/YBCO thin films YBCO thickness≈500nm LAO thickness 0.5mm

Participating institutions: UESTC; NJU; THU

Measurement Apparatus: ISR (a, b, c); STR (z)

Experimental procedures:

The four pieces of HTS thin films were measured using the three ISR apparatus (a, b, c) at three sites respectively, each for three times; and then measured using the STR apparatus (z) for comparisons; finally, misclosure tests were carried out.

Round Robin Test

$Rs \ensuremath{\,@}\xspace{-10}$ GHz, 77 K. Unit: $m_{\pmb{\Omega}}$

No	r	r r r r $=$ Mis		closure of round		Criterion		COV				
NO.	λ_{ik}	λ_{i1}	λ_{i2}	λ _{i3}	λ_i	x	<i>x</i> _{<i>r</i>1}	\boldsymbol{S}_{r1}	CD	$\left x_{r1} - \overline{x_{i}}\right $ £ CD	(S _R)	(COV*)
	x_{1k}	0.324	0.347	0.340	0.337							
1	x_{2k}	0.348	0.394	0.367	0.369	0.348	0.324	0.01179	0.00272	valid	0.0154 (0.0221)	4.4% (6.4%)
	X_{3k}	0.332	0.345	0.338	0.338							
	x_{1k}	0.338	0.338	0.337	0.338							
2	X_{2k}	0.353	0.354	0.370	0.359	0.351	0.339	0.00071	0.00163	valid	0.0062 (0.0127)	1.8% (3.6%)
	x_{3k}	0.354	0.354	0.363	0.357							
	x_{1k}	0.326	0.324	0.328	0.326							
3	x_{2k}	0.364	0.359	0.365	0.363	0.346	0.366	0.00200	0.00462	invalid	0.0136 (0.0217)	3.9% (6.3%)
	x_{3k}	0.338	0.332	0.375	0.348							
	x_{1k}	0.310	0.315	0.297	0.307							
4	X_{2k}	0.343	0.325	0.328	0.332	0.318	0.313	0.00930	0.02148	valid	0.0079 (0.0144)	2.5% (4.5%)
	<i>x</i> _{3<i>k</i>}	0.317	0.313	0.313	0.314							

Meaning of symbols and subscripts

No: Sample

Subscript *i* : laboratory

(i = 1, 2, 3 stands for UESTC, THU and NJU, respectively;

Subscript k: measurement

- X_i : average of individual lab *i*
- X_{r1} : value measured again in lab1
- \boldsymbol{S}_{r1} : Standard Deviation of Repeatability of Lab1

 S_R : Standard Deviation of Reproducibility

CD value : $(CD = \frac{4}{\sqrt{3}} \boldsymbol{s}_{r1}) |x_{r1} - \overline{x_i}| \boldsymbol{\pounds} CD$, valid

COV: coefficient of variant inside lab

$$COV = \frac{S_r}{x}$$

 χ : general average

COV* : coefficient of variant inter labs

$$\mathsf{COV}^* = \begin{array}{c} S_R \not= \\ x \\ \end{array}$$

Present work (domestic)

No	STR	ISR	Aver.	S	RSU
1	0.397	0.348	0.373	0.0346	9.3%
2	0.404	0.351	0.378	0.0375	9.9%
3	0.363	0.346	0.355	0.0120	3.4%
4	0.344	0.318	0.331	0.0184	5.6%

The target precision in IEC 61788-7 : 2006 (GB/T 22586-2008) is 20%

The improved image type sapphire resonator method (ISR) will be added to GB/T 22586 Ed 2.0 as a normative annex.

$H_{\varphi} = 0$; Ez = 0

- Absolute Rs value of a single piece of film measured;
- Rs at multifrequencies can be measured;
- One thermal cycle needed;
- No patterning of the film needed.

Present work (international)

Vote on behalf of China in IEC/TC90

IEC/TC90 working documents in 2015

IEC No.	Title	Document	CN Comments	WG Agree
61788-23	Residual resistance ratio measurement of Nb superconductors	347 NP 2015-01-09	38 (te 16; ed 18; ge 4)	37 (p.a. 6)
61788-24	Critical current measurement - Retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires	348 NP 2015-01-23	Against	
61788-4	Residual resistance ratio measurement - Residual resistance ratio of Nb-Ti and Nb_3Sn composite superconductors	349 CDV 2015-04-10	37 (ed 31; te 6)	33 (p.a. 1)
61788-21	Superconducting wires - Test methods for practical superconducting wires - General characteristics and guidance	353 FDIS 2015-05-01	9 (ed 7; ge 2)	3⁄4
61788-25	Mechanical properties measurement - Room Temperature Tensile Test on REBCO Wires	355 NP 2015-09-11	34 (ed 27; te 6; ge 1)	29
61788-22-1	Superconducting electronic devices - Generic specification for sensors and detectors	356 CD 2015-10	17 (ed ; te)	

- Vote+Comment to IEC/TC90 working documents >95%
- >80% Comments were adopted by working groups.

Present work (international)

Round Robin Test of RRR of Nb₃Sn Wires

- Six specimens from Western Superconducting Technologies
- Internal Tin method
- Each of three specimens cut from two different wires #1-1, 1-2, 1-3; #2-1, 2-2, 2-3
- Participants
 - Western Superconducting Technologies (China)
 - Institute of Plasma Physics, CAS (China)

|--|

_	Institute	Country	(1-1)	(1-2)	(1-3)	(2-1)	(2-2)	(2-3)	Measured date
	WST	China	153	156	158	182	178	181	Jun-13
—	IPP	China	152	159	158	189	173	183	Nov-13
	YNU	Korea	149	153	154	176	168	178	Jun-14
	KIT	Japan	150	153	151	175	157	173	Sep-14
	FNL	USA	143	153	153	179	165	178	Mar-15
	DURHAM	UK	148	156	157	182	171	182	Aug-15
	AVE		149	155	155	180	169	179	
	STD		3.52	2.41	3.07	5.22	7.35	3.64	
	COV(%)		2.36	1.55	1.98	2.89	4.36	2.03	

Round Robin Test of Residual Resistance Ratio of Nb₃Sn Wires, D.H. Kim @Eucas 15

Present work (international)

Chinese Experts in IEC/TC90 Working Groups

No	Working group name	Chinese experts		
WG1	Terms and definitions	ZHENG Dongning (IOP, CAS); ZHANG Hong (IME, CAS)		
WG2	Critical current measurement of Nb-Ti composite superconductors	WANG Jingrong (NIN); HUI Dong (CEPRI)		
WG3	Critical current measurement method of oxide superconductors	HUA Chongyuan (GRINM); YAN Guo (WST)		
WG4	Test method for residual resistivity ratio of Cu/Nb-Ti and Nb $_3$ Sn composite superconductors	LI Jie (IOP, CAS); GAO Huixian (WST); PU Minghua (Swjtu)		
WG5	Tensile test and electro-mechanical properties of composite superconductors	XIN Ying (TJU); CAI Chuanbing (SHU); WANG Qiuliang (IEE, CAS); WANG Jingrong (NIN); LU Yafeng (NIN); WANG Yinshun (NCEPU)		
WG6	Matrix composition ratio of composite superconductors	LIU Xianghong (WST);		
WG7	Critical current measurement method of Nb ₃ Sn composite superconductors	ZHANG Hong (IME, CAS); WANG Jingrong (NIN)		
WG8	Electronic characteristic measurements	CHEN Jian (NJU); LI Tao (GRINM); LUO Zhengxiang (UEST); JI Zhengming (NJU)		
WG9	Measurement method for AC losses in superconducting wires	WEN Huaming (IEE, CAS); ZHENG Dongning (IOP, CAS); DING Shiying (NJU); WANG Yinshun (NCEPU)		
WG10	Measurement for bulk high temperature superconductors - Trapped flux density in large grain oxide superconductors	JIA Yulei (GRINM); WEN Huaming (IEE, CAS); ZHANG Cuiping (NIN)		
WG11	Critical temperature measurement - Critical temperature of composite superconductors	CAO Liezhao (USTC); MA Ping (PKU)		
WG12	Current Leads	WANG Yinshun (NCEPU)		
WG13	General characteristics for practical superconducting wires	XIN Ying (TJU); ZHANG Guomin (IEE, CAS); LI Jianfeng (WST)		
WG14	Superconducting electronic devices - Generic specification for sensors and detectors	CHEN Jian (NJU); YOU Lixing (SIMIT)		

Present work (international)

Participating/hosting IEC/TC90 plenary & WG meetings

China has hosted two TC90 plenary meetings (4th and 14th)

• Bell Tower Hotel in Xi'an, China on 20th-22th August, 2012. 34 participants from 6 countries

Plenary meeting scene

• Beijing, China in October, 1996

Prof Zhang is honored for the IEC 1906 Award in recognition of his remarkable contribution to IEC 61788-20 and IEC 61788-21 as an expert since the start of WG 13.

Difficulty

Difficulties and shortcomings

Difficulties:

- Financial resource
 - Little financial support dedicated for superconductivity standards from the government level.
 - Quite limited operating funds from CAS.
- Human resource
 - Not many researchers willing to take part in standardization work in the superconductivity community.
 - Lack of young people with expertise both in superconductivity and standardization.

Shortcomings:

- Few IEC standards proposed and developed by China; Few independently developed Chinese standards;
- Lack of promotion of standardization activities in companies and industries;
- "Aged" committee for more than 10 years.

Future

Future Work related to standardization

- New committee with members from universities, research institutes, industries, as well as final users.
- Gradual conversion of all IEC standards into Chinese standards.
- New standard proposal from enterprises.
- Recommendation of Chinese members to TC90 working groups.
- Promotion of research works in relevant institutions for possible standards
 - Tensile test on practical SC wires in cryogenic temperatures
 - Critical bending radius test of REBCO Wires
 - The minimum quench energy (MQE) measurement
 - General guideline to SC Microwave filters
 - Ic measurements of 2G HTS long tape

. . .

R & D of 2G HTS Practical Wires @ China

R2R: roll to roll processing

	Buffer Layer		SC Layer		
Institution	On textured NiW	On untextured tape via IBAD	MOCVD	PLD	MOD
Tsinghua U	\checkmark	\checkmark			\checkmark
BJTU	R2R				\checkmark
NINM/XTU					\checkmark
SWJT	\checkmark				R2R
JLU			\checkmark		
CAS	\checkmark				\checkmark
UESTC	R2R	\checkmark	\checkmark		
GRINM	R2R			R2R	
SJTU-SC	R2R	R2R		R2R	
SHU-SCSC	R2R	R2R			R2R
SAMRI		R2R	R2R		

Kilometer-class production lines have been set up!

Thank you for your attention!