Vortex pinning in Iron-based superconductors #### Kees van der Beek Laboratoire des Solides Irradiés Ecole polytechnique – CNRS – CEA Palaiseau Physics of Light and Matter / PhOM Université Paris-Saclay France # **IUMRS-ICAM 2017** The 15th International Conference on Advanced Materials Mathieu GRISOLIA Marcin KONCZYKOWSKI Yanina FASANO Comisión Nacional de Energía Atómica Hernan PASTORIZA René CEJAS Takasada SHIBAUCHI Shigeru KASAHARA Yuji MATSUDA Ruslan PROZOROV Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY Ma Y W, Gao Z S, Qi Y P, Zhang X P, Wang L, Zhang Z Y and Wang D L 2009 Physica C 469 651 K. Iida et al., Scientific Reports 3:2139 (2013) ## The critical current density in iron-based superconductors Yanwei Ma, Superconducting Science & Technology **25**, 113001 (2012) Trends? Limitations? Prospects? A. Gurevich, Rep. Prog. in Physics **74**, 124501 (2011). C.J. van der Beek, G. Rizza, M. Konczykowski, P. Fertey, I. Monnet, Th. Klein, R. Okazaki, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, M.E. Tillman, S. Bud'ko, P.C. Canfield, T. Shibauchi, Y. Matsuda, Phys. Rev. B 81, 174517 (2010). C.J. van der Beek, M. Konczykowski, S.Kasahara, T. Terashima, R. Okazaki, T. Shibauchi, Y. Matsuda, Phys. Rev. Lett. 105, 267002 (2010). C.J. van der Beek, G. Rizza, M. Konczykowski, P. Fertey, I. Monnet, Th. Klein, R. Okazaki, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, M.E. Tillman, S. Bud'ko, P.C. Canfield, T. Shibauchi, Y. Matsuda, Phys. Rev. B 81, 174517 (2010). C.J. van der Beek, M. Konczykowski, S.Kasahara, T. Terashima, R. Okazaki, T. Shibauchi, Y. Matsuda, Phys. Rev. Lett. 105, 267002 (2010). C.J. van der Beek, G. Rizza, M. Konczykowski, P. Fertey, I. Monnet, Th. Klein, R. Okazaki, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, M.E. Tillman, S. Bud'ko, P.C. Canfield, T. Shibauchi, Y. Matsuda, Phys. Rev. B **81**, 174517 (2010). C.J. van der Beek, M. Konczykowski, S.Kasahara, T. Terashima, R. Okazaki, T. Shibauchi, Y. Matsuda, Phys. Rev. Lett. **105**, 267002 (2010). C.J. van der Beek, G. Rizza, M. Konczykowski, P. Fertey, I. Monnet, Th. Klein, R. Okazaki, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, M.E. Tillman, S. Bud'ko, P.C. Canfield, T. Shibauchi, Y. Matsuda, Phys. Rev. B 81, 174517 (2010). C.J. van der Beek, M. Konczykowski, S.Kasahara, T. Terashima, R. Okazaki, T. Shibauchi, Y. Matsuda, Phys. Rev. Lett. 105, 267002 (2010). LiFeAs Konczykowski et al., PRB **84**, 180514 (2011). Ba(Fe_{0.925}Co_{0.075})₂As₂ crystal #2.1 Magnetization vs. Applied magnetic field ## The critical current density in iron-based superconductors Is there a pinning mechanism common to all iron-based superconductors? Nature of the pinning centres? Which pinning centres can do the job? Role of the defect charge? Role of multi-band character of superconductivity? Relation with the phase diagram? Charge carrier density? Superfluid density? Role of order-parameter symmetry? Role of order parameter nodes? Can pinning be improved? Single crystal PrFeAsO_v: - (a) nm-sized inclusion; - (b) Line dislocation C.J. van der Beek et al., Phys. Rev. B 81, 174517 (2010). P.O. Sprau et al., Science **357**, 75-80 (2017) Single crystal FeSe Fe vacancies S. Kasahara et al., PNAS 111, 16309 (2014) #### **Dopant atoms**: - Local- and nm-scale T_c variations - small voids ## J_{c} of iron-based superconductors example of $Ba(Fe_{0.93}Co_{0.07})_{2}As_{2}...$ Ba(Fe_{0.925}Co_{0.075})₂As₂ crystal #2.1 Magnetization vs. Applied magnetic field ## J_{c} of iron-based superconductors example of $Ba(Fe_{0.93}Co_{0.07})_{2}As_{2}...$ Ba(Fe_{0.925}Co_{0.075})₂As₂ crystal #2.1 Magnetization vs. Applied magnetic field ## J_{c} of iron-based superconductors example of $Ba(Fe_{0.93}Co_{0.07})_{2}As_{2}...$ Ba(Fe_{0.925}Co_{0.075})₂As₂ crystal #2.1 Critical current density vs applied magnetic field $$j_{c} = j_{c}(0) f(b) g(t)$$ #### example of $Ba(Fe_{0.93}Co_{0.07})_2As_2...$ $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics $$j_{c} = j_{c}(0) f(b) g(t)$$ #### example of Ba($Fe_{0.93}Co_{0.07}$)₂As₂... $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics $$j_{c} = j_{c}(0) f(b) g(t)$$ #### example of Ba($Fe_{0.93}Co_{0.07}$)₂As₂... $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics #### Field dependence: - Statistics of pinning - change in vortex lattice structure - change in vortex structure $$j_{c} = j_{c}(0) f(b) g(t)$$ #### example of $Ba(Fe_{0.93}Co_{0.07})_2As_2...$ $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics #### Field dependence: - Statistics of pinning - change in vortex lattice structure - change in vortex structure #### Temperature dependence: - thermal activation of quasiparticles: $\lambda(T)$ - decrease of the order parameter: $\xi(T)$ - multiple band effects - thermal activation of vortices - thermal smearing of the pin potential $$j_{c} = j_{c}(0) f(b) g(t)$$ #### example of $Ba(Fe_{0.93}Co_{0.07})_2As_2...$ $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics #### Field dependence: - Statistics of pinning - change in vortex lattice structure - change in vortex structure #### Temperature dependence: - thermal activation of quasiparticles: $\lambda(T)$ - decrease of the order parameter: $\xi(T)$ - multiple band effects - thermal activation of vortices - thermal smearing of the pin potential #### **Low fields / isolated vortices** Elastic energy loss ⇔ Pinning energy gain $$\tilde{\varepsilon}_1 \frac{u^2}{L} = U_p$$ $$ilde{arepsilon}_1 \simeq arepsilon^2 arepsilon_0 = rac{arepsilon^2 \Phi_0^2}{4\pi \mu_0 \lambda_{ab}^2}$$ vortex line tension U_p : pinning energy n_i : pin density #### **Low fields / isolated vortices** Elastic energy loss ⇔ Pinning energy gain $$\tilde{\varepsilon}_1 \frac{u^2}{L} = U_p$$ $$ilde{arepsilon}_1 \simeq arepsilon^2 arepsilon_0 = rac{arepsilon^2 \Phi_0^2}{4\pi \mu_0 \lambda_{ab}^2}$$ vortex line tension U_p : pinning energy n_i : pin density Several to several dozen inin #### **Low fields / isolated vortices** Elastic energy loss ⇔ Pinning energy gain $$\tilde{\varepsilon}_1 \frac{u^2}{L} = U_p$$ $$ilde{arepsilon}_1 \simeq arepsilon^2 arepsilon_0 = rac{arepsilon^2 \Phi_0^2}{4\pi \mu_0 \lambda_{ab}^2}$$ vortex line tension U_p : pinning energy n_i : pin density Fill all the (sparse) extended defects $(n_i << \xi^{-3})$: $L = (\varepsilon_1 / \pi n_i U_p)^{1/2}$ L determined by the probability to find defects Vortex pinning in iron-based superconductors – IUMRS – ICAM 2017 UNIVER PARIS-SAC #### **Low fields / isolated vortices** Elastic energy loss ⇔ Pinning energy gain $$\tilde{\varepsilon}_1 \frac{u^2}{L} = U_p$$ $$ilde{arepsilon}_1 \simeq arepsilon^2 arepsilon_0 = rac{arepsilon^2 \Phi_0^2}{4\pi \mu_0 \lambda_{ab}^2}$$ vortex line tension U_p : pinning energy n_i : pin density Fill all the (sparse) extended defects $(n_i << \xi^{-3})$: $L = (\varepsilon_1 / \pi n_i U_p)^{1/2}$ L determined by the probability to find defects δU If there are none (left): localization in the weak pinning potential ($n_i >> \xi^{-3}$) the pinning energy grows as $L^{1/2}$; cut off when $u \sim \xi$ ~ 5 nm or 2 *ξ* Several to several dozen nm ### Sparse, large defects $(n_i << \xi^3)$: strong pinning ullet Pinning force $F_{\mathfrak{p}}=\ \Phi_0 j_{\mathfrak{c}}$ from **direct sum** $\Sigma_i f_{\mathfrak{p},\mathfrak{i}}$ $$j_c = 0.14 j_0 \varepsilon^{-1} n_i^{1/2} \left(\mathcal{D}_i^z \mathcal{F}(T) \right)^{3/2}$$ ### Atomic size, dense defects $(n_i >> \xi^3)$: weak, collective pinning • Pinning force $F_{\rm p}=(n_i\,\langle f_{\rm p}^{\ 2}\,\rangle/\xi^2L_c)^{1/2}$ from fluctuations $\langle f_{\rm p}^{\ 2}\,\rangle^{1/2}$ $$j_c = j_0 \varepsilon^{-1} \delta^{2/3}$$ $$L_c = \varepsilon \xi \left(rac{j_0}{j_c} ight)^{1/2}$$ δU ### Sparse, large defects $(n_i << \xi^3)$: strong pinning ullet Pinning force $F_{ m p}=\,\Phi_0 j_{ m c}\,$ from **direct sum** $\Sigma_i f_{ m p,i}$ $$j_c = 0.14 j_0 \varepsilon^{-1} n_i^{1/2} \left(\mathcal{D}_i^z \mathcal{F}(T) \right)^{3/2}$$ ### Atomic size, dense defects $(n_i >> \xi^3)$: weak, collective pinning • Pinning force $F_{\rm p}=$ (n_i $\langle f_{\rm p}^{\ 2}\ \rangle/\xi^2L_c)^{1/2}$ from fluctuations $\langle f_{\rm p}^{\ 2}\ \rangle^{1/2}$ $$j_c = j_0 \varepsilon^{-1} \delta^{2/3}$$ $$L_c = \varepsilon \xi \left(\frac{j_0}{j_c}\right)^{1/2}$$ δU $$j_0(T) = \frac{\Phi_0}{2\sqrt{3}\pi\mu_0\lambda_{ab}^2\xi_{ab}} = \frac{2}{\sqrt{3}}\frac{\varepsilon_0}{\Phi_0\xi}$$ the depairing current 1, or a few $$\times$$ 10⁹ Am⁻² @ B = 0 a few \times 10⁸ Am⁻² @ B ~ 1T $L_{\rm c} \sim 13 \, \xi$ 1, or a few × 10^9 Am⁻² @ B = 0 a few × 10^8 Am⁻² @ B ~ 1T $L_{\rm c} \sim 13 \, \xi$ #### Depairing current and model critical currents in iron-based superconductors $$j_{c} = j_{c}(0) f(b) g(t)$$ #### example of $Ba(Fe_{0.93}Co_{0.07})_2As_2...$ $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics #### Field dependence: - Statistics of pinning - change in vortex lattice structure - change in vortex structure #### Temperature dependence: - thermal activation of quasiparticles: $\lambda(T)$ - decrease of the order parameter: $\xi(T)$ - multiple band effects - thermal activation of vortices - thermal smearing of the pin potential #### Field dependence of the critical current density: statistics of pinning $n_i << \xi^{-3}$ - $F_{ m p}$ from direct sum $\Sigma_i f_{ m p,I}$ - # pins / vortex limited by vortex elasticity: - Low $B: \varepsilon_1$ of individual vortex, $j_c \neq j_c$ (B) - High B: interaction with other vortices, $j_c \propto B^{-1/2}$ $$\begin{split} j_{c}(0) &= \frac{f_{p}}{\sqrt{\pi}\Phi_{0}\varepsilon} \left(\frac{U_{p}n_{i}}{\varepsilon_{0}}\right)^{1/2} & (B < B^{*}) \\ j_{c}(B) &= \frac{f_{p}}{\Phi_{0}\varepsilon} \left(\frac{U_{p}n_{i}}{\varepsilon_{0}}\right) \left(\frac{\Phi_{0}}{B}\right)^{1/2} & (B > B^{*}) \end{split}$$ $$j_c^s(B) = \frac{f_p}{\Phi_0 \varepsilon} \left(\frac{U_p n_i}{\varepsilon_0} \right) \left(\frac{\Phi_0}{B} \right)^{1/2} \quad (B > B^*)$$ Yu. Ovchinnikov and B. Ivlev, PRB 43, 8024 (1991); C.J. van der Beek et al PRB 66, 024523 (2002); G. Blatter, V.B. Geshkenbein, J. Koopman, PRL 92, 067009 (2004). #### Field dependence of the critical current density: statistics of pinning $n_i << \xi^{-3}$ #### **Strong pinning** - $F_{\rm p}$ from direct sum $\Sigma_i f_{\rm p,I}$ - # pins / vortex limited by vortex elasticity: - Low $B: \varepsilon_1$ of individual vortex, $j_c \neq j_c$ (B) - High B: interaction with other vortices, $j_c \propto B^{-1/2}$ $$j_{\mathcal{E}}(0) = \frac{f_p}{\sqrt{\pi}\Phi_0\varepsilon} \left(\frac{U_p n_i}{\varepsilon_0}\right)^{1/2}$$ $(B < B^*)$ $$j_c^s(B) = \frac{f_p}{\Phi_0 \varepsilon} \left(\frac{U_p n_i}{\varepsilon_0}\right) \left(\frac{\Phi_0}{B}\right)^{1/2} \quad (B > B^*)$$ Yu. Ovchinnikov and B. Ivley, PRB 43, 8024 (1991); C.J. van der Beek et al PRB 66, 024523 (2002); G. Blatter, V.B. Geshkenbein, J. Koopman, PRL 92, 067009 (2004). #### Weak "collective" pinning $n_i >> \xi^{-3}$ A.I. Larkin, Yu. Ovchinnikov, JETP **31**, 784 (1970); JLTP 34, 409 (1979). G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur. Rev. Mod. Phys. 66, 1125 (1994). - $F_{\rm p} = (n_i \langle f_{\rm p}^2 \rangle / V_c)^{1/2} \sim 2^{\rm nd}$ moment of $f_{\rm p}$ - correlation volume $V_c = R_c^2 L_c$: - Low B: ε_1 of individual vortex $$V_{\rm c} = L_{\rm c} a_0^2 \mid j_c = j_0 \varepsilon^{-1} \delta^{2/3} \mid \neq j_{\rm c} (B)$$ $B > B_{\rm sv} = 4\pi B_{\rm c2}(j_{\rm c}/j_{\rm 0})$: interaction with other vortices, $V_c = L_c R_c^2$ $$R_c = \left(\frac{\varepsilon_0 \xi}{2\Phi_0 j_c}\right)^{1/2} \qquad j_c \sim e^{-B/B} o$$ ## J_c of iron-based superconductors example of $Ba(Fe_{0.93}Co_{0.07})_2As_2...$ $Ba(Fe_{0.925}Co_{0.075})_2As_2$ crystal #2.1 Critical current density vs applied magnetic field Low B Strong pinning by nm-scale sparse defects S. Demirdis et al., PRB **84**, 094517 (2011) $Ba(Fe_{0.925}Co_{0.075})_2As_2$ crystal #2.1 Critical current density vs applied magnetic field #### Low B **Strong pinning by nm-scale sparse defects** $$j_c(0) = \frac{f_p}{\sqrt{\pi}\Phi_0\varepsilon} \left(\frac{U_p n_i}{\varepsilon_0}\right)^{1/2} \qquad (B < B^*)$$ $$j_c(B) = \frac{f_p}{\Phi_0\varepsilon} \left(\frac{U_p n_i}{\varepsilon_0}\right) \left(\frac{\Phi_0}{B}\right)^{1/2} \quad (B > B^*)$$ S. Demirdis et al., PRB 84, 094517 (2011) Ba(Fe_{0.925}Co_{0.075})₂As₂ crystal #2.1 Critical current density vs applied magnetic field # **Strong pinning by nm-scale sparse defects** S. Demirdis et al., PRB 84, 094517 (2011) Bitter decoration of single crystal Ba($Fe_{0.9}Co_{0.1}$)₂As₂ S. Demirdis et al., PRB 84, 094517 (2011) Cf Eskildsen *et al.* (BD,SANS); Vinikov et al. (BD); Inosov *et al.* (MFM, SANS); Kalisky *et al.*; Luan *et al.* (scanning SQUID) Bitter decoration of single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ S. Demirdis et al., PRB 84, 094517 (2011) Vortex ensemble arrested at $T \sim 0.9 T_c$ Cf Eskildsen et al. (BD,SANS); Vinikov et al. (BD); Inosov et al. (MFM, SANS); Kalisky et al.; Luan et al. (scanning SQUID) Bitter decoration of single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ S. Demirdis et al., PRB 84, 094517 (2011) $$H_{dec} = 10 \text{ Oe}$$ $$T_{dec}$$ $$T_{c}$$ Vortex ensemble arrested at $T \sim 0.9 T_c$ Cf Eskildsen et al. (BD,SANS); Vinikov et al. (BD); Inosov et al. (MFM, SANS); Kalisky et al.; Luan et al. (scanning SQUID) Vortex energies in single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ S. Demirdis et al., PRB 84, 094517 (2011) Vortex energies in single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ triangular Abrikosov vortex lattice S. Demirdis et al., PRB **84**, 094517 (2011) Vortex energies in single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ - Near T_c : $\Delta \varepsilon_0$ determined by ΔT_c - Vortex ensemble arrested at $T \sim 0.95 T_c$ - Consistent with spread of T_c in the crystal S. Demirdis et al., PRB **84**, 094517 (2011) #### Vortex pinning forces in single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ #### Vortex pinning forces in single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ $\begin{aligned} |\mathbf{f_i}| \sim 5 - 10 \times 10^{\text{-}6} \, \text{N/m} & \text{Average Pinning force per vortex} \\ f_{\text{p}} \sim 3 \times 10^{\text{-}13} \, \text{N} & \text{Pinning force of a single pin} \end{aligned}$ Distance between 2 pins ~ 30 - 60 nm nm-scale disorder $$j_c(0) = \frac{f_p}{\sqrt{\pi}\Phi_0\varepsilon} \left(\frac{U_p n_i}{\varepsilon_0}\right)^{1/2} \text{a few} \times \mathbf{10^9~Am^{-2}} \, \text{@ B = 0}$$ Gap maps Vortex pinning forces in single crystal Ba(Fe_{0.9}Co_{0.1})₂As₂ $\bar{T}_{c} - \delta T_{c}$ F. Massee et al., Phys. Rev. B **79**, 220517 (2009) $|\mathbf{f}_i| \sim 5 - 10 \times 10^{-6} \,\mathrm{N/m}$ Average Pinning force per vortex $f_{\rm p} \sim 3 \times 10^{-13} \,\rm N$ Pinning force of a single pin Distance between 2 pins ~ 30 - 60 nm nm-scale disorder $$j_c(0) = \frac{f_p}{\sqrt{\pi}\Phi_0\varepsilon} \left(\frac{U_p n_i}{\varepsilon_0}\right)^{1/2} \text{a few} \times \mathbf{10^9~Am^{-2}} \, \text{@ B = 0}$$ Vortices in single crystal BaFe₂(As_{1-x}P_x)₂ #### Vortex energies in single crystal BaFe₂(As_{1-x}P_x)₂ Vortex energies in Ba(Fe_{0.9}Co_{0.1})₂As₂ S. Demirdis et al., PRB 84, 094517 (2011) S. Demirdis et al., PRB 87, 087506 (2013) $$\begin{split} \langle f_p \rangle &\sim \Delta \varepsilon_0 \sim \frac{\partial \varepsilon_0}{\partial \lambda_{ab}} \frac{\partial \lambda_{ab}}{\partial x} \Delta x \\ j_c(0) &= \frac{\int_p^{\downarrow}}{\Phi_0 \overline{\mathcal{L}}} = \pi^{1/2} \frac{\int_p^{\downarrow}}{\Phi_0 \varepsilon_{\lambda}} \left(\frac{U_p n_i}{\varepsilon_0} \right)^{1/2} \end{split}$$ S. Demirdis et al., PRB 87, 087506 (2013) K. Hashimoto et al., Science **336**, 1554 (2012) S. Demirdis et al., PRB 87, 087506 (2013) K. Hashimoto et al., Science 336, 1554 (2012) Ba(Fe_{0.925}Co_{0.075})₂As₂ crystal #2.1 Critical current density vs applied magnetic field # **Strong pinning by nm-scale sparse defects** C.J. van der Beek et al., PRL 105, 267002 (2010); PRB 81, 174517 (2010). $$\frac{j_{\rm c} = j_0 \, \varepsilon^{-1}}{\delta^{2/3}}$$ - Charged dopant atoms explain the weak pinning contribution to j_c - If they are assumed to be responsible for quasiparticle scattering $$\delta = 0.35 n_i D_v^4 / \varepsilon \xi = 0.35 n_i \sigma_{tr}^2 / \pi^2 \varepsilon \xi$$ P.O. Sprau et al., Science **357**, 75-80 (2017) $$\sigma_{tr} = \frac{4\pi^2}{k_F^2} \sin^2 \delta_0 \sim \pi D_v^2$$ $$l = (n_i \sigma_{tr})^{-1}$$ Quasiparticle mean free path - magnitude 🗸 - doping dependence | Material | impurity n _d (nn | $D_v(Å)$ | $\sin \square_0 = 2^{-1/2} k_F D_v$ | | |---------------------------------|-----------------------------|----------|-------------------------------------|--------------------------------------| | PrFeAsO _{0.9} | (vacancy) 1.5 | 1.46 | 0.3(2) | | | $NdFeAsO_{0.9}F_{0.1}$ | (F) 1.5 | 0.9 | 0.2 | | | $Ba(Fe_{0.955}Ni_{0.45})_2As_2$ | (Ni) 0.9 | 0.8 | 0.17 | | | $Ba(Fe_{0.925}Co_{0.75})_2As_2$ | (Co) 1.5 | 0.6 | 0.13 | | | $Ba(Fe_{0.9}Co_{0.1})_2As_2$ | (Co) 2 | 0.6 | 0.13 | • | | $Ba(Fe_{0.76}Ru_{0.24})_2As_2$ | (Fe vacancy) - | 8.0 | 0.16 | $k_{\rm F} \sim 0.3 {\rm \AA}^{-1}$ | | $Ba_{0.72}K_{0.28}Fe_2As_2$ | (K) 2.8 | 0.7 | 0.1(4) | · | | $Ba_{0.6}K_{0.4}Fe_2As_2$ | (K) 4 | 8.0 | 0.2 | | | $Ba_{0.45}K_{0.55}Fe_2As_2$ | (K) 5.5 | 0.7 | 0.2 | | $$\sigma_{tr} = \frac{4\pi^2}{k_F^2} \sin^2 \delta_0 \sim \pi D_v^2$$ $$l = (n_i \, \sigma_{tr})^{-1}$$ Quasiparticle mean free path C.J. van der Beek et al., PRL **105**, 267002 (2010); PRB **81**, 174517 (2010). • The same scattering determines the low temperature $\lambda(T)$ #### **Electron doped PrFeAsO_{1-v}** - K. Hashimoto et al., PRL102, 171002 (2009); - R. Gordon et al., PRB 79, 100506 (2009). - Vortex pinning in the mixed state - Critical current density j_c - Vortex pinning in the mixed state - Critical current density j_c #### Hole doped Ba_{0.45}K_{0.55}Fe₂As₂ K. Hashimoto et al., Phys. Rev. Lett. 102, 207001 (2009). - Vortex pinning in the mixed state - Critical current density j_c #### Isovalently substituted BaFe₂(As_{1-x}P_x)₂ BaFe₂(As_{0.67}P_{0.33})₂ Shigeru Kasahara, Phys. Rev. B 81, 220501R (2010) - Vortex pinning in the mixed state - Critical current density j_c k/T (WK⁻²m⁻¹) 0.08 0.04 0.05 0.10 0.15 $T^2 (K^2)$ 0.20 0.25 ## Low T Electron irradiation of isovalently substituted BaFe₂ (As_{1-x}P_x)₂ Pelletron **Facility** At LSI http://emir.in2p3.fr/LSI Lifting of gap nodes by quasiparticle scattering Y. Mizukami et al., Nature Communications 5:5657 (2014) Point defects (Frenkel pairs) ## Low T Electron irradiation of isovalently substituted BaFe₂ (As_{1-x}P_x)₂ $Ba(Fe_{0.925}Co_{0.075})_2As_2$ crystal #2.1 Critical current density vs applied magnetic field Low B **Strong pinning by nm-scale sparse defects** C.J. van der Beek et al., PRL 105, 267002 (2010); PRB 81, 174517 (2010). H. Ding et al., EPL 83, 47001 (2008) D.J. Singh and M.H. Du, PRL 100, 237003 (2008) Different values of Δ and N(0) on different bands Penetration depth determined by superfluid density / DOS Coherence length determined by the gap amplitude (and the DOS) H. Ding et al., EPL 83, 47001 (2008) D.J. Singh and M.H. Du, PRL 100, 237003 (2008) Different values of Δ and N(0) on different bands Penetration depth determined by superfluid density / DOS Coherence length determined by the gap amplitude (and the DOS) X Vortex pinning in iron-based superconductors – IUMRS – ICAM 2017 H. Ding et al., EPL 83, 47001 (2008) D.J. Singh and M.H. Du, PRL 100, 237003 (2008) Different values of Δ and N(0) on different bands Penetration depth determined by superfluid density / DOS $$\varepsilon = \lambda_{ab}/\lambda_c = \xi_c/\xi_{ab}$$ $$\varepsilon = B_{\rm c2}^{\parallel \rm c}/B_{\rm c2}^{\parallel \rm ab}$$ Multiband superconductivity: different anisotropy ratios $$\varepsilon_{\lambda} = \lambda_{\rm ab}/\lambda_{\rm c} \sim \frac{\langle v_{\rm F,c} \rangle}{\langle v_{\rm F,ab} \rangle}$$ $$\mathcal{E}_{\lambda} = \frac{B_{\mathrm{c1}}^{\parallel \mathrm{ab}} \ln \kappa_{\mathrm{ab}}}{B_{\mathrm{c1}}^{\parallel \mathrm{c}} \ln \kappa_{\mathrm{c}}}$$ $$\kappa_{ab} = (\lambda_{ab}\lambda_c/\xi_{ab}\xi_c)^{1/2}$$ X $$\varepsilon_{\xi} = \xi_{c}/\xi_{ab} \sim \frac{\langle v_{F,c} \rangle}{\langle v_{F,ab} \rangle} \frac{\langle \Delta_{ab} \rangle}{\langle \Delta_{c} \rangle}$$ $$arepsilon_{\xi} = B_{\mathrm{c}2}^{\parallel\mathrm{c}}/B_{\mathrm{c}2}^{\parallel\mathrm{ab}}$$ # $PrFeAsO_{1-y}: B_{c1} \text{ and } B_{c2}$ $$\gamma_{\lambda} = \varepsilon_{\lambda}^{-1} = \lambda_{c}/\lambda_{ab} = \frac{B_{c1}^{\parallel c} \ln \kappa_{c}}{B_{c1}^{\parallel ab} \ln \kappa_{ab}} \sim \frac{\langle v_{F,ab} \rangle}{\langle v_{F,c} \rangle}$$ $$\gamma_{\xi} = \varepsilon_{\xi}^{-1} = \xi_{ab}/\xi_{c} \sim B_{c2}^{\parallel ab}/B_{c2}^{\parallel c} \sim \frac{\langle v_{F,ab} \rangle}{\langle v_{F,c} \rangle} \frac{\langle \Delta_{c} \rangle}{\langle \Delta_{ab} \rangle}$$ R. Okazaki et al., Phys. Rev. B 79, 064520 (2009). ### **Critical current anisotropy?** J. Hänisch *et al.*, IEEE Trans. Appl. Superc. **21** (2010) 2887. $\begin{aligned} &Ba(Fe_{0.9}Co_{0.1})_2As_2\\ &Thin\ films \end{aligned}$ K. Iida et al., Scientific Reports 3:2139 (2013) Ph. Moll et al., **nature** Materials **9**, 628 (2010) 2 μπ $\rm SmFeAsO_{0.75}F_{0.25}$ SmFeAs(O,F) # Anisotropy of the critical current : 3 independent j_c 's # Anisotropy of the critical current: 3 independent j_c 's - Strong pinning: 1D (single vortex) and 3D - 1D collective pinning # Anisotropy of the critical current: 3 independent j_c 's - 1. Strong pinning: 1D (single vortex) and 3D - 2. 1D collective pinning - a. Anisotropy of $f_{\rm p}$ - b. Anisotropy of $U_{ m p}$ - c. Anisotropy of vortex line tension ε_1 - d. Anisotropy of c_{44} , c_{66} # Anisotropy of the critical current: 3 independent j_c 's - 1. Strong pinning: 1D (single vortex) and 3D - 2. 1D collective pinning - a. Anisotropy of $f_{\rm p}$ - b. Anisotropy of $U_{ m p}$ - c. Anisotropy of vortex line tension ε_1 - d. Anisotropy of c_{44} , c_{66} Simplest model : ε_{λ} ε_{ξ} # Anisotropy of the critical current: 1D collective pinning G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 $B \parallel ab$ $B \parallel ab$ (hard motion) (easy motion) $$j_{ab}^c = j_{SV}$$ $$j_{ab}^{ab} = j_{ab}^{c}$$ $$j_c^{ab} = \varepsilon j_{ab}^c$$ $$j_{ab}^c = j_{SV}$$ $$j_{ab}^{ab} = \left(\frac{\varepsilon_{\lambda}}{\varepsilon_{\epsilon}}\right)^{7/3} j_{SV}$$ $$j_{ab}^{c} = j_{SV} \qquad j_{ab}^{ab} \ = \ \left(\frac{\varepsilon_{\lambda}}{\varepsilon_{\xi}}\right)^{7/3} j_{SV} \qquad j_{c}^{ab} \ = \ \left(\frac{\varepsilon_{\lambda}^{5/3}}{\varepsilon_{\xi}^{2/3}}\right) j_{SV}$$ # Anisotropy of the critical current: strong pinning $L = (\varepsilon_1 / \pi n_i U_p)^{1/2}$ $j_{\rm c} = f_{\rm p} / \Phi_0 L$ G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 $$B \parallel ab$$ $j \parallel ab$ b_{x} (hard motion) (easy motion) - Anisotropy of f_p : ε_b - Anisotropy of vortex line tension ε_1 $$j_{ab}^{ab} = rac{arepsilon_{\lambda}^{2}}{arepsilon_{b}^{3/2} arepsilon_{\xi}} j_{s}^{c}$$ $$j_c^{ab} = rac{arepsilon_\lambda^2}{arepsilon_b^{3/2}} j_s^c$$ # Anisotropy of the critical current: strong pinning (a) $$b_x = 10 \xi$$ $b_z = 10 \xi$ Multiband: $j_{ab}^{\ \ c} = j_s^{\ c}$ $$j_{ab}^{ab} = rac{arepsilon_{\lambda}^2}{arepsilon_{b}^{3/2} arepsilon_{\xi}} j_{s}^{c}$$ ### Anisotropy of the critical current: strong pinning (a) $$b_x = 5\xi$$ $b_z = \xi$ H ab H c $b_x = 5\xi$ $b_z = 5\xi$ H ab H c $b_x = 5\xi$ $b_z Multiband: $$j_{ab}^{c} = j_s^{c}$$ $$j_{ab}^{ab}= rac{arepsilon_{\lambda}^{2}}{arepsilon_{b}^{3/2}arepsilon_{\xi}}j_{s}^{c}$$ #### In all cases: #### **Multiband** Collective pinning : $j_c = (n_i \langle f_p^2 \rangle / V_c)^{1/2} / B$ $j_{ab}^{ab}/j_c^{ab} = 1/\epsilon_{\xi}$. Strong pinning : $j_{\rm c} = f_{\rm p} / \Phi_0 L$ The anisotropy of the elementary pinning force ### **Vortex pinning in LiFeAs: T dependence of trapped flux** # j_c anisotropy in LiFeAs $$j_{ab}^{ab}/j_c^{ab} = 1/\epsilon_{\xi}$$. #### viz Ba(Fe_{0.9}Co_{0.1})₂As₂ Thin films J. Hänisch *et al.*, IEEE Trans. Appl. Superc. **21** (2010) 2887. # \bigcirc # j_c anisotropy in LiFeAs (and other iron-based superconductors) - ▲ K. Cho *et al.*, PRB **83**, 060502(R) (2011). - ▼ N. Kurita *et al.*, J. Phys. Soc. Japan 80, 013706 (2011) - S. Khim *et al.*, Phys. Rev B **84**, 104502 (2011). #### viz Ba($Fe_{0.9}Co_{0.1}$)₂As₂ Thin films J. Hänisch *et al.*, IEEE Trans. Appl. Superc. **21** (2010) 2887. # Pinning in optimally-doped Ba_{1-x}K_xAs₂Fe₂ - Strong pinning below B_{sp}: chemical disorder - Weak pinning around B_{sp}: dopant atoms, Fe vacancies - 122 type compounds most promising because of high B_{c2}, smaller anisotropy, less creepy - 1111 type compounds : high T_c - FeSe - tailoring of defects might yield almost isotropic j_c #### Take-home: # Pinning in Iron-based superconductors: - It's (mainly) the dopant atoms - Magnitude: follows depairing current - Low B: strong pinning by nm-scale heterogeneity - Intermediate B : collective pinning $\delta \kappa$ mechanism Charged dopants / vacancies # Multiple band superconductivity and j_c : - Supplementary anisotropy in j_c appears - j_c anisotropy for field $|\cdot|$ ab directly probes coherence length anisotropy - Beware the T dependence (and we haven't even talked about creep...) $$j_{c} = j_{c}(0) f(b) g(t)$$ ### example of $Ba(Fe_{0.93}Co_{0.07})_2As_2...$ $$t = T / T_{c}$$ $$b = B / B_{c2}(T)$$ Zero temperature, zero-field j_c : pinning mechanism, statistics #### Field dependence: - Statistics of pinning - change in vortex lattice structure - change in vortex structure #### Temperature dependence: - thermal activation of quasiparticles: $\lambda(T)$ - decrease of the order parameter: $\xi(T)$ - multiple band effects - thermal activation of vortices - thermal smearing of the pin potential # Thermal activation and creep # Thermal activation and creep - Creep is of nucleation type - Weak pins determine creep rate # Thermal activation and creep