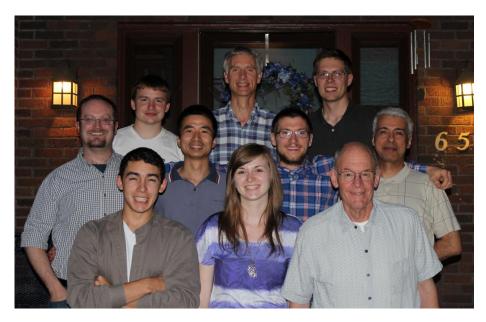
Tu-I-SSP-04 Ferromagnetic Josephson Junctions for Cryogenic Memory

Norman Birge, Michigan State University in collaboration with Northrop Grumman Corporation and Arizona State University

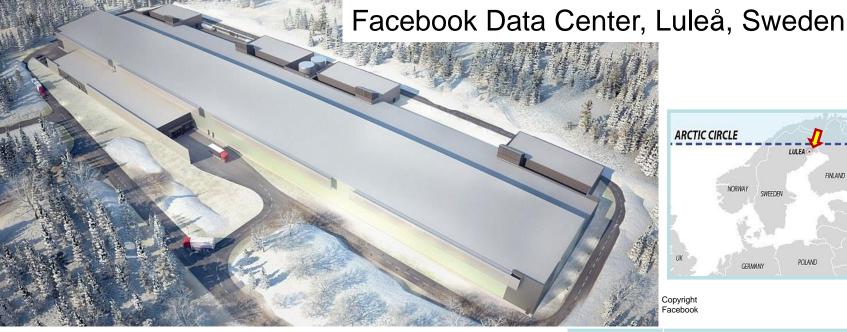
(with thanks to D. Scott Holmes, Booz Allen Hamilton & IARPA)

The project depicted was or is supported in part by the U.S. Army Research Office and/or the Department of Energy. The information depicted does not necessarily reflect the position or the policy of the Government, and no official endorsement should be construed.



The group

Eric Gingrich, Bethany Niedzielski, Joseph Glick, Yixing Wang, Bill Martinez, Josh Willard, Sam Edwards, Reza Loloee, William P. Pratt, Jr., plus many earlier students!

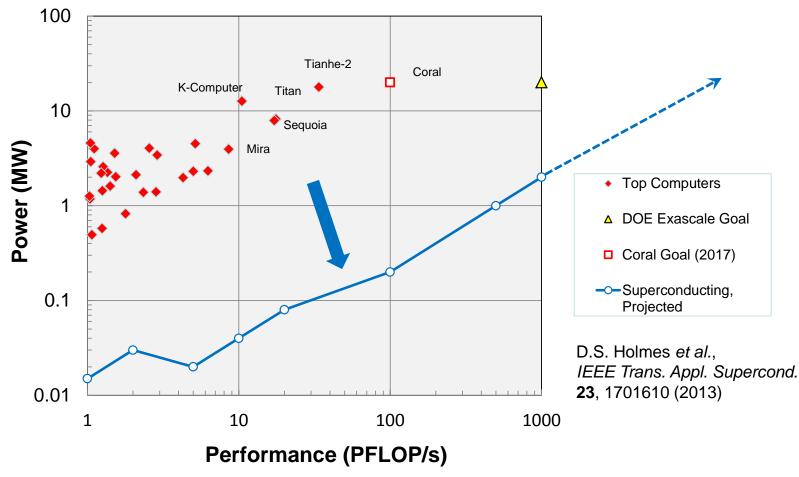


An old picture...

Outline

- The need for energy-efficient computing
- Superconducting memory: JMRAM
- Superconducting/ferromagnetic hybrid systems
- Demonstration of phase control of an S/F/S
 Josephson junction the basic memory device
- Future prospects

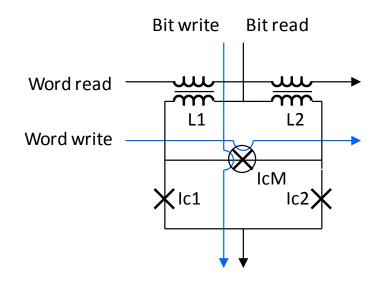
The need for energy-efficient computing


- Opened in 2013
- Cost: ~760 M\$
- Nearby Lule River generates
 9% of Sweden's electricity (~4.23 GW)
- Average annual temperature: 1.3 °C

Specifications					
27-51 PFLOP/s					
21-27 PB RAM 1900-6800 PB disk					
84 MW avg* (120 MW max)					
290,000 ft ² (27,000 m ²)					
~1.07 PUE					

^{*} estimated

Superconducting computing looks promising


Our approach to superconducting memory:

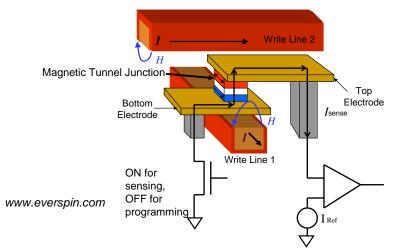
Josephson Magnetic Random Access Memory (JMRAM)

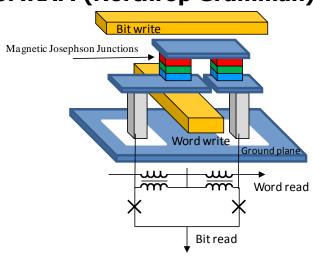
Anna Y. Herr & Quentin P. Herr, US Patent 8,270,209 (2012) A.Y. Herr, Q.P. Herr & Ofer Naaman, US Patent 9,208,861 (2015)

Northrop Grumman Corporation

Memory cell is a SQUID loop

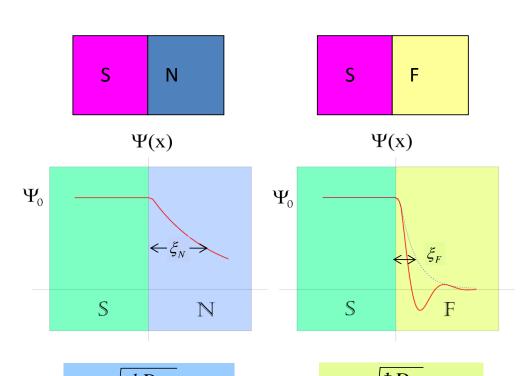
One junction has two stable phase states for "0" and "1"

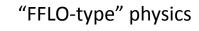

Magnetic states are written using standard MRAM techniques

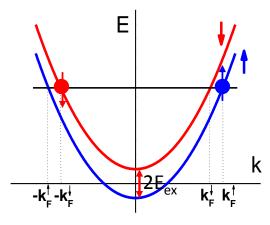

JMRAM is a Superconducting MRAM

Memory cell is a Josephson junction containing a magnetic spin valve

memory state – spin-valve state sets junction phase


write – magnetization reversal


read – Josephson effect


No idle/static power dissipation, read energy is dissipated only for logical "1"

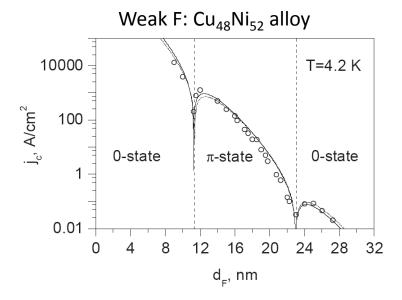
Superconductor/Ferromagnet proximity effect

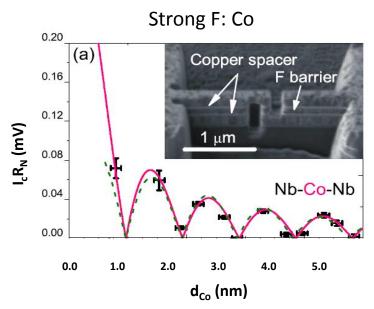
$$k_F^{\uparrow} - k_F^{\downarrow} \equiv Q \approx 2 E_{ex} / \hbar v_F$$

$$\xi_F = Q^{-1} = \frac{\hbar v_F}{2E_{ex}} \qquad \text{ballistic}$$

$$\xi_F = \sqrt{\frac{\hbar D_F}{E_{ex}}}$$
 diffusive

Consequence: S/F/S Josephson junctions oscillate between 0 and π junctions as d_F increases:


Buzdin, Bulaevskii, & Panyukov (1982).


$$\xi_F = \sqrt{\frac{\hbar D_F}{E_{ex}}}$$

O-state: $I_s = I_c \sin(\phi_2 - \phi_1)$

 π -state: $I_s = I_c sin(\phi_2 - \phi_1 + \pi)$

Ryazanov et al., PRL **86**, 2427 (2001); PRL **96**, 197003 (2006).

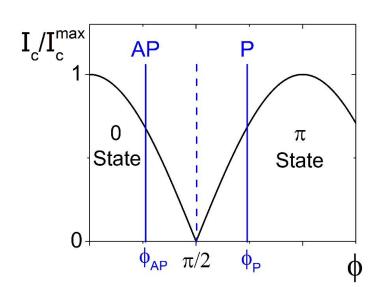
S

 ϕ_1

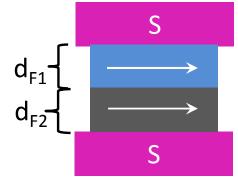
F

S

 ϕ_2

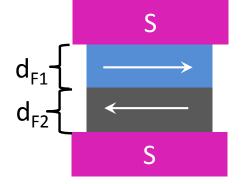

Robinson, Piano, Burnell, Bell, Blamire, PRL **97**, 177003 (2005)

Can we control I_c or phase state of a single Josephson junction?


Add a second ferromagnetic layer: S/F₁/F₂/S

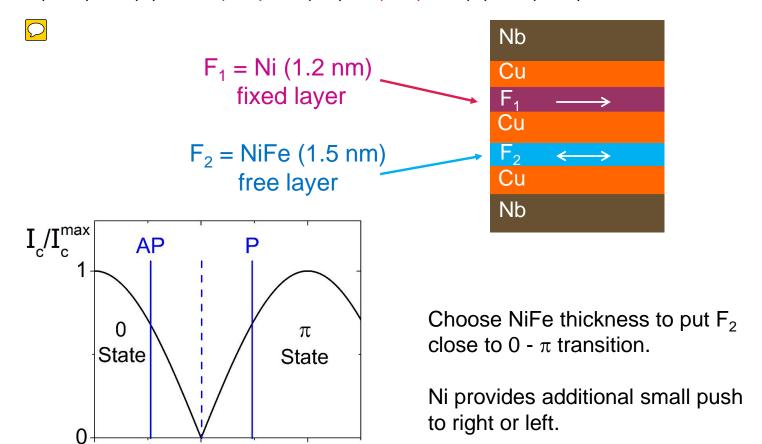
I_c and phase depend on relative magnetization direction

Electron pair accumulates phase \$\phi\$ while traversing junction



Parallel state: $\phi = \frac{d_{F1}}{\xi_{F1}} + \frac{d_{F2}}{\xi_{F2}}$

Antiparallel state: $\phi = \frac{d_{F1}}{\xi_{F1}} - \frac{d_{F2}}{\xi_{F2}}$

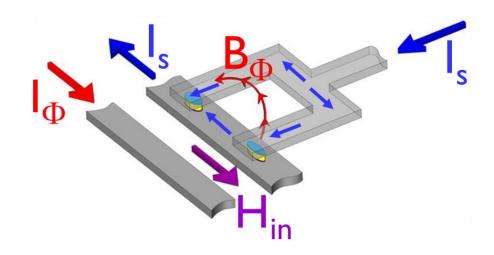

$$I_{c} \propto exp[-(d_{F1}/\xi_{F1} + d_{F2}/\xi_{F2})] \mid cos(d_{F1}/\xi_{F1} \pm d_{F2}/\xi_{F2}) \mid$$

S/F₁/N/F₂/S Josephson Junction Composition

Nb(100)/Cu(5)/NiFe(1.5)/Cu(10)/Ni(1.2)/Cu(5)/Nb(150)

 $\phi_{AP} \pi/2$

Two junctions in a SQUID loop used to measure relative junction phase

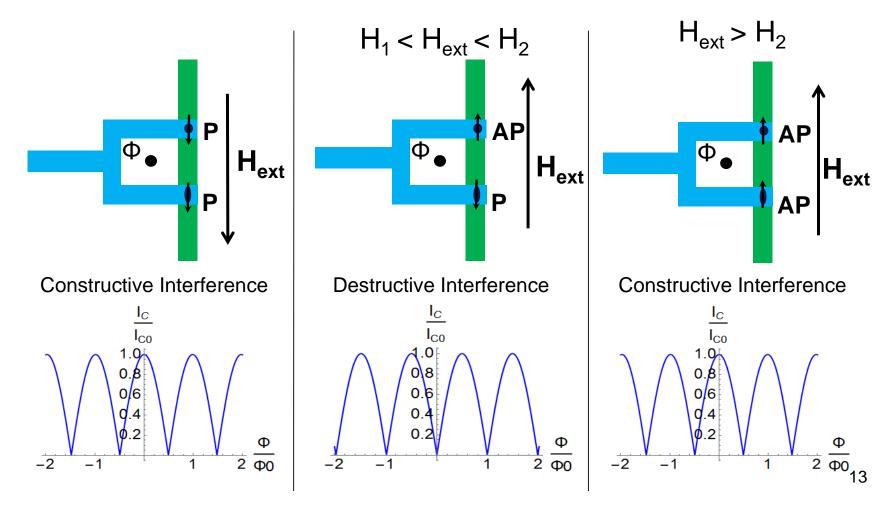

Schematic:

Switching field H_1 $H_1 < H_2$ \Re Switching field H_2

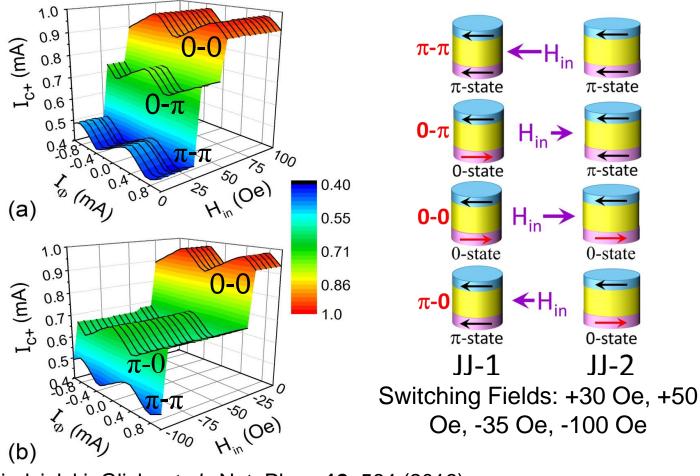
Junction sizes: Both have Area = $0.5 \mu m^2$ Aspect Ratios = 2.2 and 2.8

Cartoon of Actual Device:

On-chip current line couples magnetic flux into SQUIDs

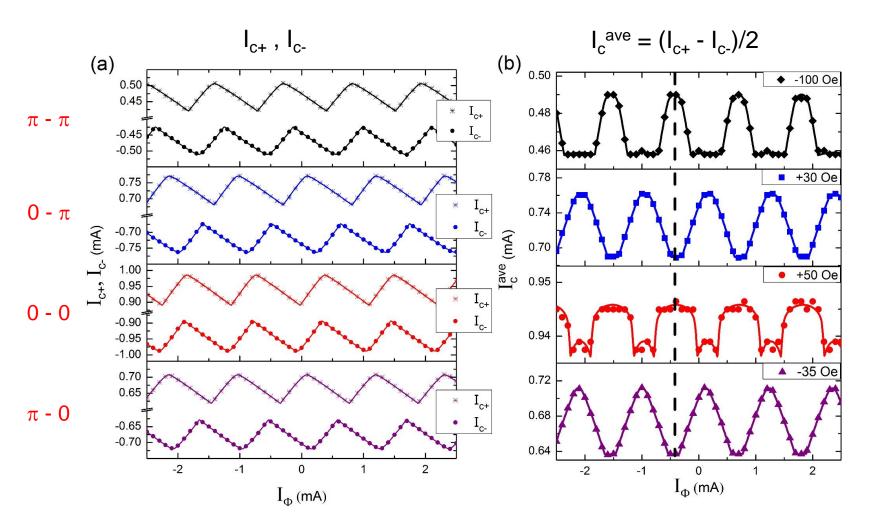


Switch magnetization with in-plane field

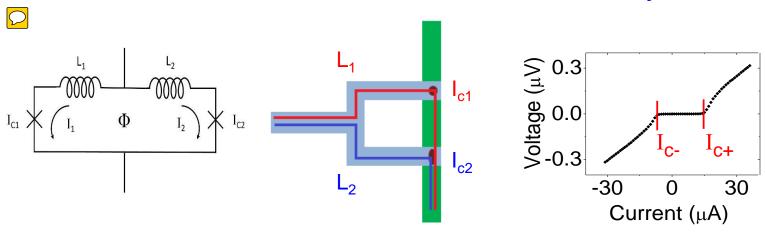

Different aspect ratio pillars have different switching fields

At Relatively Low External Fields, Two Phase Changes Should Be Observable

Initialize with large field in -z direction, then slowly increase H_{ext} in +z direction

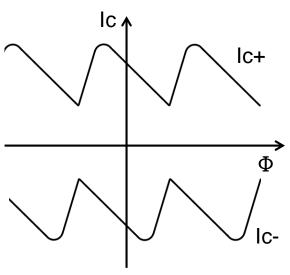


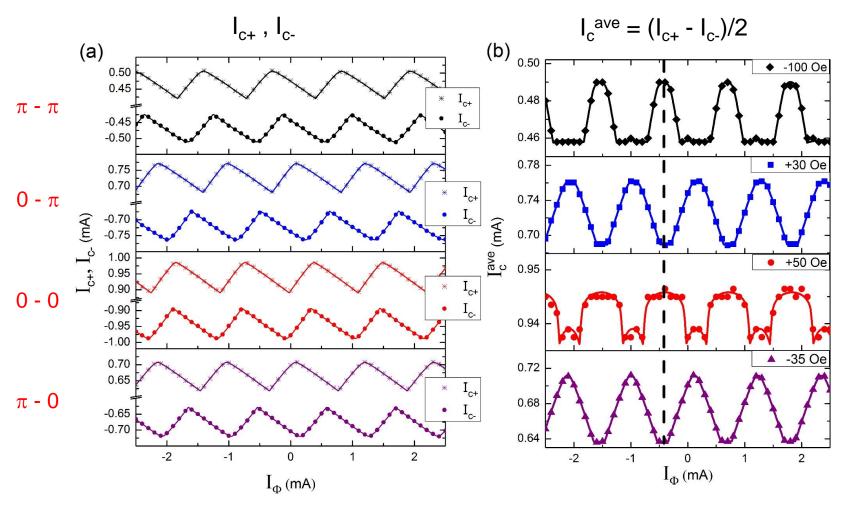
Data show clean switching between the four expected states


Gingrich, Niedzielski, Glick, et al., Nat. Phys. 12, 564 (2016)

Data cuts for the four magnetic states

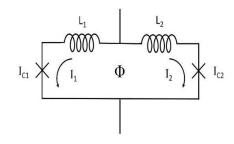
 \bigcirc


$I_c(\Phi)$ curves have tilted ratchet shape when loop inductances and/or critical currents are asymmetric


 $I_c^+(\Phi)$ and $I_c^-(\Phi)$ oscillations are asymmetric when $L_1 \neq L_2 \& I_{c1} \neq I_{c2}$

 I_c^+ and I_c^- shift by equal amounts and in opposite directions along the Φ axis

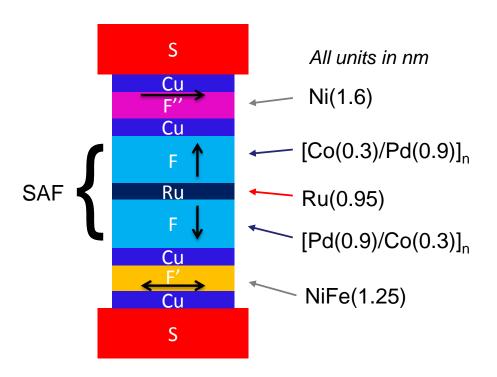
Analyze I_c⁺ and I_c⁻ peak shifts to extract JJ phase shifts


Quantitative fits to SQUID modulation data for the four magnetic states

Gingrich, Niedzielski, Glick, et al., Nat. Phys. 12, 564 (2016)

Quantitative Analysis Consistently Assigns the Inductance and Critical Currents of Each State

state	I _{c1} (mA)	I _{c2} (mA)	L ₁ (pH)	L ₂ (pH)
π - π	0.292	0.217	5.73	11.38
0 - π	0.565	0.203	5.64	11.33
0 - 0	0.567	0.419	5.63	11.55
π - 0	0.294	0.420	5.71	11.56
		ave (5.68	11.46
		σ	0.05	0.12


FastHenry simulations:

$$L_1 \approx 7 \text{ pH}, \quad L_2 \approx 13 \text{ pH}$$

Fitting parameters from independent fits of 4 magnetic states are highly consistent

• Exception: critical current of JJ #2 changes slightly in π state when JJ #1 switches from π to 0 state

New result! Controllable $0-\pi$ switching with spin-triplet supercurrent

Spin-triplet supercurrent decays very slowly in F

 $0 - \pi$ switching occurs by spin rotation rather than accumulated pair phase

Spin-triplet JJ requires three F layers with non-collinear magnetizations between adjacent layers

Data are not yet available for public dissemination, but we plan to submit them for publication soon: J.A. Glick et al. (2017)

What needs to be done

- Memory (see talk Fr-C-DIG-03 by Ofer Naaman)
 - Optimize performance of magnetic materials
 - Lower M_{sat} ⇒ lower E_{switch}
 - · Reduce extrinsic sources of anisotropy in thin films
 - Find better material for fixed layer (Ni has issues)
 - Minimize underlayer roughness
 - Develop read/write electronics & interface to SFQ logic
 - (see poster We-SDM-08 by Quentin Herr)
- Make the rest of the computer! (see talk Fr-I-DIG-02 by Anna Herr)

Conclusions

- Magnetic Josephson junctions have demonstrated potential for ultra-low-power cryogenic memory
- Much more work needs to be done!

Bibliography

- E.C. Gingrich, B.M. Niedzielski, J.A. Glick, Y Wang, D.L. Miller, R. Loloee R, W.P. Pratt Jr, N.O. Birge, "Controllable 0-π Josephson junctions containing a ferromagnetic spin valve," Nature Phys. 12, 564 (2016). DOI: 10.1038/nphys3681
- D.S. Holmes, A.M. Kadin, M.W. Johnson, "Superconducting Computing in Large-Scale Hybrid Systems", Computer, 48, 34, December 2015. DOI: 10.1109/MC.2015.375
- D.S. Holmes, A.L. Ripple, and M.A. Manheimer, "Energy-efficient superconducting computing power budgets and requirements", IEEE Trans. Appl. Supercond., 23, 1701610 (2013). DOI: 10.1109/TASC.2013.2244634
- Q.P. Herr, A.Y. Herr, O.T. Oberg, and A.G. Ioannidis, "Ultra-low-power superconductor logic", J. Appl. Phys. 109, 103903 (2011). DOI: 10.1063/1.3585849