

Leading Innovation >>>

Manufacturing of LTS and HTS Magnets for Heavy-lon Rotating Gantry

<u>S. Takayama</u>, K. Koyanagi, H. Miyazaki, S. Takami, T. Orikasa, Y. Ishii, T. Kurusu (TOSHIBA Corporation)

Y. Iwata, K. Noda

(Department of Accelerator and National Institute of Radiological Sciences)

T. Obana

(National Institute for Fusion Science)

K. Suzuki, T. Ogitsu

(High Energy Accelerator Research Organization)

N. Amemiya

(Kyoto University)

This work is supported by the ministry of economy, trade and industry of the Japanese government, METI and the Japan agency for medical research and development, AMED.

> EUCAS2017 Sept. 19, 2017

Outline

- Introduction
- Design and Manufacturing of First LTS gantry
- Recent Development of LTS gantry
- Future plan (HTS gantry)
- Conclusion

Introduction

Introduction

Cancer therapy

- Surgery
- Chemotherapy

Introduction

Heavy-ion radiotherapy

EUCAS2017 Sept. 19, 2017 2LO1-01

Introduction

Rotating gantry (Irradiation equipment)

example of irradiation by rotating gantry

Introduction

Irradiation system

example of scanning irradiation

Design and Manufacturing of First LTS gantry

Design of first LTS gantry

- Total length:
 14 m Approx.
- Rotating radius:
 5.5 m Approx.
- Diameter of end ring:
 6.5 m
- Rotating speed:
 0.38 rpm (rated speed)
- Superconducting magnets
 SC wire :Nb/Ti
- ✓ 4K GM Cryocoolers Q'ty 34

(Liquid Helium free system)

 ✓ Multiple-flattop operation (No energy degrader)

Magnet layout of the gantry

Design and Manufacturing of First LTS gantry

TOSHIBA Leading Innovation >>> EUCAS2017 Sept. 19, 2017 2LO1-01

Photograph of manufactured LTS magnet

Combined functional and conduction-cooling magnet

Design of magnetic field

The magnet was designed so that the integral dipole and quadrupole field were uniform.

Y. Iwata et al., Proc. of PAC2013, Pasadena, CA USA, FRXB1

Rotating test

- Rotation over +/- 180 degrees
- Appling maximum coil current
 - No quench and no temperature rise observed
- Long term rotating test (33,000 times position changing) No change in the coil temperature

photographs of rotating test (prototype magnet) Y. Iwata et al., Proc. of PAC2013, Pasadena, CA USA, FRXB1

Pattern excitation

Operated SC Magnet simulating 201-flattop pattern (BM10). Each flattop was 300ms.

Measurement of magnetic field

Construction of first LTS gantry

(By Courtesy of QST/NIRS)

Beam commissioning

Beam commissioning was complied successfully. Treatment already started from 9th May 2017.

Y. Iwata et al., Proc. of the 13th PASJ, WEOL13. Y. Iwata et al., Nucl. Instrum. and Meth. in Phys. Res. A834(2016)71.

2013-2016 : R&D and Construction 2016-2017 : Commissioning

EUCAS2017 Sept. 19, 2017 2LO1-01

Recent Development of LTS gantry

Recent Development of LTS gantry

Next generation LTS gantry

40% volume reduction

Recent Development of LTS gantry

Recent Development of LTS gantry

Design of LTS magnet

The magnet was designed based on the conventional one so that the integral dipole and quadrupole field were uniform.

Fabrication of this LTS magnet is on-going

Future plan (HTS gantry)

Future plan (HTS gantry)

Magnet layout of HTS rotating gantry

Layout of HTS gantry

Magnet layout of HTS rotating gantry

4 types of 10 magnets were employed

Specifications of HTS magnets

parameter	unit	Type A	Туре В	Туре С	Type D
Bending angle	deg.	18	26	22.5	22.5
Bending radius	m	1.15	1.15	1.5	1.5
Max. field (dipole)	Т	5.8	5.8	4.5	4.5
Max. field (quad.)	T/m	15.5	33	-	1.7
Field uniformity (dipole)	-	$\leq 1 \times 10^{-3}$			
Field uniformity (quad.)	-	$\leq 1 \times 10^{-3}$			

Layout of HTS gantry

Model magnet fabrication

1/3 scale model magnet

Degradation-free saddle-shaped HTS coil

The superconducting properties of all saddle-shaped HTS coil were measured under a LN2 environment.

Degradation-free saddle-shaped HTS coil

The superconducting properties of all saddle-shaped HTS coil were measured under a LN2 environment.

Excitation test

After assembly of the model magnet, excitation test were carried out. Operating current was increased up to 153 A.

Excitation test

The generated magnetic field at the center of the beam duct was 1.2 T.

Pattern excitation test

Current was increased up to 120A and kept it for an hour. Current was decreased in 10 steps, maintaining the last step for another hour

Pattern excitation test

TOSHIBA Leading Innovation >>>

Conclusion

To reduce the size of the rotating gantry for heavy-ion radiotherapy, we have been developing LTS magnets and HTS magnets.

LTS gantry

- The first LTS gantry was successfully manufactured, and therapeutic irradiation as a clinical trial is on-going.
- For the purpose of further downsizing of the gantry, We are developing new LTS magnet and scanning system, and the fabrication is on-going

HTS gantry

- For the future technology, saddle- shaped HTS coils and model magnet was fabricated.
- The model magnet could generate a magnetic field of 1.2 T at the center of the beam duct.
- The results of pattern excitation test were positive.
- Further investigation of the model magnet is on-going.

TOSHIBA Leading Innovation >>>