A Persistent Current

1.3 GHz (30.5 T) NMR

Yoshinori Yanagisawa
RIKEN Center for Life Science Technologies

Acknowledgement:

RIKEN: Dr. H. Maeda, Dr. R. Piao and Dr. M. Takahashi
JASTEC: Dr. M. Hamada and Dr. K. Saito
Tokyo Tech.: Prof. Y. Ishii
Sumitomo Electric: Dr. T. Nagaishi and Dr. K. Ohki
JFCC: Dr. T. Kato, Mr. D. Yokoe and Dr. T. Hirayama
Univ. of Tokyo: Prof. Y. Ikuhara
NIMS: Dr. H. Kitaguchi and Dr. Y. Takano
Sophia Univ.: Prof. T. Takao, Mr. T. Ueno and Mr. K. Yamagishi
Aoyama Gakuin Univ.: Prof. J. Shimoyama
Muroran Tech.: Dr. X. Jin
Okayama Univ.: Prof. H. Ueda

This work was supported in part by the MEXT.
A PERSISTENT CURRENT 1.3 GHz NMR

- 30 T-class persistent current magnet with SUPERCONDUCTING JOINTS
- Analysis of human brain amyloid to address ALZHEIMER’S DISEASE
- The technologies are open to be used for much HIGHER FIELD (35-50 T) and HIGHER TEMPERATURE (~77 K)

Connected in series, $L \sim 1000$ H

One of the preliminary designs by Dr. M. Hamada of JASTEC

Y. Yanagisawa, MT25, Amsterdam, The Netherlands, Aug. 28 – Sep. 1, 2017
The Challenge: “PERSISTENT CURRENT MARATHON”

The total resistance $R_{\text{TOTAL}} \approx 0.1 \text{ nΩ}$ is achieved by combining various components with different resistances. The total resistance is calculated as follows:

- $RL \times 1$: resistance of 1 component
- $RR \times 16$: resistance of 16 components
- $R(L)B \times 1$: resistance of 1 component
- $BB \times 60$: resistance of 60 components
- $BL \times 1$: resistance of 1 component

These components are connected in series, resulting in a total resistance of less than 10^{-12} Ω/joint. Cooper-pair runs 4 Amsterdam full marathons through oxide and metal circuit with 0.1 nΩ!

Animation by H. Mochida
The Marathon Has Started
Intermediate Grown Superconducting (iGS) joint

Superconducting joints using Bi-added PbSn solders

“Superconducting joints using Bi-added PbSn solders”

NEWS!

Bi-2223 / NbTi joint

Plenary presentation We-Mo-P16-02 given at MT25, 29 August - 01 September 2017, Amsterdam, The Netherlands.

Y. Yanagisawa, MT25, Amsterdam, The Netherlands, Aug. 28 – Sep. 1, 2017
Persistent current 1.3 GHz NMR:
One of the most challenging goals of MT, making a huge impact on coping with Alzheimer's disease.

The persistent current marathon with superconducting joints has started towards \textbf{MT30} (2027)!