Over-Current Characteristics of the REBCO Coated Conductors with Inhomogeneous Critical Current and Index Number

Ju Hui Choi, Kwang Lok Kim, Yoon Hyuck Choi, Young-Gyun Kim, and Haigun Lee

Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136 - 713, Korea
+82-2-3290-3820, +82-2-928-3584, and haigunlee@korea.ac.kr

Abstract: Repetitive quench tests and over-current tests were performed on REBCO-coated conductors to investigate the effects of the inhomogeneous critical current and n-value on their degradation and permanent damage. Based on the repetitive quench tests, the critical current of the samples degraded from 93 A to 52 A after the 16th repetition. Local degradation of the critical current was observed in the sections with high n-values, while the sections with low critical current values remained intact. Results from the over-current test showed that all REBCO-coated conductor samples burned out at the section with the highest n-value, at which Joule heat energy was easily initiated to result in excessive accumulation. Hence, the n-value of the REBCO-coated conductor can be one of the essential factors leading to permanent damage of the coated conductor in over-current conditions, as it increases the voltage and Joule heat generation. Overall, the results of this study suggest that the inhomogeneity of the n-value should be considered when designing superconducting devices operated in over-current conditions, such as the superconducting fault current limiters.

<Acknowledgement>
This work was supported by the Mid-Career Researcher Program through an NRF grant funded by the MEST (2012-046999).