Improvement of flux pinning properties of GdBa$_2$Cu$_3$O$_{7-\delta}$ films with Gd$_2$O$_3$ additions by a post-annealing process

Department of Materials Science & Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea

We report enhanced flux pinning properties of GdBa$_2$Cu$_3$O$_{7-\delta}$(GdBCO) films with Gd$_2$O$_3$ by a post-annealing process. According to our preliminary study on GdBCO coated conductors by the RCE-DR (Reactive Co-Evaporation Deposition & Reaction) process, the post-annealing process can be effective for enhanced flux pinning properties of GdBCO films in which Gd$_2$O$_3$ particles are trapped in GdBCO matrix, since Gd$_2$O$_3$ and GdBCO can react to form rod-shaped clusters of the stacking faults by a post-annealing process in oxygen pressures above ~ 300 mTorr. On the basis of these results, GdBCO films with Gd$_2$O$_3$ which were fabricated by pulsed laser deposition (PLD) using KrF ($\lambda = 248$ nm) eximer laser on CeO$_2$-buffered MgO (100) single crystal substrate were post-annealed at various temperatures of 750 ~800 °C in low oxygen pressures below 1 Torr. Details of the relationship among the post-annealing conditions, microstructure, and superconducting properties of GdBCO CCs are discussed in this presentation.

This work was supported by the Power Generationand Electricity Delivery of the Korea Institute of EnergyTechnology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry andEnergy (No. 20131010501800)