Improvement of flux pinning properties of RCE-DR processed GdBa$_2$Cu$_3$O$_{7-\delta}$ coated conductors by post-annealing

Won-Jae Oh a, Soon-Mi Choi a, Jae-Hun Lee b, Seung-Hyun Moon b, Sang-Im Yoo a,*

aDepartment of Materials Science & Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea

bSuperconductor, Nano & Advanced Materials Corporation (SuNAM Co.) Ltd, Anseong, Gyunggi-do 456-812, Korea

We report the improved superconducting properties of GdBa$_2$Cu$_3$O$_{7-\delta}$ (GdBCO) coated conductors (CCs) by a post-annealing process. Following the stability phase diagram of GdBCO, GdBCO CCs fabricated by a reactive co-evaporation deposition & reaction (RCE-DR) process were post-annealed at various high temperatures of ~700°C in low oxygen pressures below 300 mTorr. In relation to T_c and J_c of as-deposited sample, those of GdBCO CCs could be improved with the optimal post-annealing condition. Post annealing process was proceeded from 5min to 2hour. It was found that the microstructure and superconducting properties of GdBCO CCs strongly depend on the post-annealing condition. In this presentation, details of the relationship among the post-annealing conditions, microstructure, and superconducting properties of GdBCO CCs are discussed.

This work was supported by the Power Generation and Electricity Delivery of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy (No. 20131010501800)