This work was in part supported by the US Department of Energy under agreement numbers DE-SC0009545, DE-SC0014009 and DE-SC0021710.

Development of High-strength and High Strain Tolerant CORC® Conductors for High-Field Magnets

Danko van der Laan and Jeremy Weiss
Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Kyle Radcliff
Advanced Conductor Technologies, Boulder, Colorado, USA

Shreyas Balachandran, Ulf Trociewitz, Dima Abraimov, Ashley Francis, James Gillman, Daniel Davis, Younjae Kim, Van Griffin, George. Miller, Lance Cooley, David Larbalestier
Applied Superconductivity Center, NHMFL, Tallahassee, Florida USA

Huub Weijers
Robinson Research institute, Victoria University of Wellington, New Zealand

Anvar V.A., Keyang Wang and Arend Nijhuis
University of Twente, Enschede, the Netherlands

CCA21, October 14th, 2021
CORC® magnet cables and wires

CORC® wires (2.5 – 4.5 mm diameter)
- Wound from 2 – 3 mm wide tapes with 25 and 30 µm substrate
- Typically no more than about 30 tapes
- Flexible with bending down to < 50 mm diameter

CORC® cable (5 – 8 mm diameter)
- Wound from 3 – 4 mm wide tapes with 30 – 50 µm substrate
- Typically no more than about 50 tapes
- Flexible with bending down to > 100 mm diameter

CORC® Cable In Conduit Conductor (CI CC)
- Performance as high as 100,000 A (4.2 K, 20 T)
- Combination of multiple CORC® cables or wires
- Bending diameter about 1 meter
High-field insert solenoid wound from CORC® cables

Addresses main challenges of low-inductance HTS magnets
• Operate CORC® insert solenoid in **14 T background field**
• CORC® insert should have meaningful bore: 100 mm diameter
• High operating current: **4,000 – 5,000 A**
• \(J_c > 200 \text{ A/mm}^2\)
• Operate at \(J_B\) source stress >250 MPa

CORC® cable layout
• 28 REBCO tapes of 3 mm width containing 30 μm substrates
• 4.56 mm CORC® cable outer diameter

CORC® insert layout
• 100 mm inner diameter, 143 mm OD
• 4 layers, 45 turns
• 18.5 m of CORC® cable
• Wet-wound with Stycast 2850
• Stainless steel overbanding between layers

14 T LTS (161 mm bore)
CORC® magnet winding

Interlayer stainless steel overbanding
Results 14 T background field

- Maximum current 4,200 A to avoid quench trigger
- $I_c = 4,404$ @ $0.1 \mu V/cm$
- Contact resistance 11.1 nΩ
- 15.86 T central field
- 16.77 T on conductor
- J_B source stress 275 MPa
CORC® insert solenoid test: summary

CORC® insert impact
- First HTS insert magnet tested at high current (>1 kA) in a background field
- Stable operation likely due to current sharing between tapes in the CORC® cable
- Combination of high I_c, J_w, and J_Br demonstrated at 16.8 T peak field

<table>
<thead>
<tr>
<th>Applied field [T]</th>
<th>Central field at I_c [T]</th>
<th>Peak field at I_c [T]</th>
<th>I_c (0.1 µV/cm) [A]</th>
<th>n-value</th>
<th>J_w [A/mm²]</th>
<th>J_e [A/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12.25</td>
<td>13.35</td>
<td>5,315</td>
<td>7.9</td>
<td>203.9</td>
<td>340.3</td>
</tr>
<tr>
<td>12</td>
<td>14.08</td>
<td>15.09</td>
<td>4,908</td>
<td>9.1</td>
<td>188.3</td>
<td>314.2</td>
</tr>
<tr>
<td>14</td>
<td>15.86</td>
<td>16.77</td>
<td>4,404</td>
<td>10.5</td>
<td>168.9</td>
<td>281.9</td>
</tr>
</tbody>
</table>

https://doi.org/10.1088/1361-6668/ab7fbe

Conductor challenges when going to higher field and larger coil diameters
- A Central Solenoid in a future compact fusion reactor may have a J_Br of 200 A/mm² x 20 T x 0.2 m = 800 MPa (source stress)
- How to further optimize the CORC® conductor to allow higher hoop stress, but also a higher irreversible strain limit?
Why is Nb-Ti the workhorse of superconducting magnets?

Nb-Ti is a superconducting magnet workhorse because

• It’s a round
• It’s fully isotropic (mechanically and electro-magnetically)
• Doesn’t require reaction after magnet winding
• It’s a transposed, multifilament wire
• It’s highly flexible, allowing very tight bends

How about CORO® wires?

✔ ✔ ✔ ✔

(At least partly)

(Not too tight please!)

We know this, so what’s new? To find out, let’s consider this 44 year old plot:

Irreversible strain limit under axial tension (ϵ_{irr}) exceeds 2 % driven by reduction in Nb-Ti cross-section with strain

ϵ_{irr} defined at $I_c(0)/I_c(0) < 97-98$

Irreversible strain limit of practical superconductors

Irreversible strain limit (applied strain)

• Nb$_3$Sn: 0.65 % [1]
• Bi-2212 wires: 0.3 % [2]
• Bi-2223 tapes: 0.4 % [3]
• REBCO CC: 0.6 % [4]

How about CORC® wires?

The effect of axial tensile strain on I_c of CORC® wires

Simplified description of CORC® wire structure

- REBCO tapes wound in a helical fashion on solid core
- Tapes behave as springs; extending axially and contracting radially under tensile load
- The core acts a central support, but also confines the radial contraction of the springs

Testing CORC® wires under axial tension

- Test performed in LN$_2$ at 77 K
- Maximum load of 13 kN applied to terminations
- Sample strain measured with pair of clamp-on extensometers
Performance of a standard 30-tape CORC® wire

Standard CORC® wire
- 30 REBCO tapes of 2 mm width
- Annealed copper former (2.55 mm diameter)
- Wire diameter 3.6 mm

- Critical strain is already twice that of a straight REBCO tape
- Critical stress of 150 MPa is competitive with magnet conductors such as Nb₃Sn
Effect of tape winding angle on ε_{irr}

Tape winding angle drives the irreversible strain limit in CORC® wires
Verification of tape I_c retention after strain

Procedure

- Strain CORC® wire to $0.85 \times \varepsilon_{\text{rr}}$
- Extract tapes from CORC® wire
- Measure I_c from extracted tapes

Results

- CORC® wire retention 98%
- Extracted tape I_c retention 98%

High ε_{rr} of 3.3% is real!
Analytical verification of strain results

Analytical approach

- Calculate the tape axial strain from change in geometry
- Ignore the torsion component

\[\varepsilon_{\text{tape}} = \frac{\Delta S}{S} = \frac{l + \Delta l}{\sin \alpha} - \frac{l}{\sin \alpha} \approx \frac{\Delta l}{l} \left(\sin^2 \alpha - \nu \cos^2 \alpha \right) \]

![Diagram showing irreversible strain limit vs winding angle](image)
FEM verification of results

FEM approach
- Calculate REBCO value exceeding ε_{rr}
- Assumes I_c correlates to remaining superconducting volume

![Graph showing FEM verification of results with applied tensile strain](image_url)

- **CORC® with low winding angles**
- **CORC® with high winding angles**
- **Single REBCO tape**
- **FEM-Calculated values**
Extending ε_{irr} of high tape count CORC® wires

Optimized 28-tape CORC® wire layout

- 28 tapes of 2 mm width (30 µm substrate)
- 14 layers wound on 2.55 mm copper former
- tape winding angle 25 – 35°, depending on layer

![Graph showing Ic(ε)/Ic(0) vs Strain, % for different samples]

Optimized 28-tape CORC® wire : ε_{irr} = 6 – 7 %!!

Advanced Conductor Technologies
www.advancedconductor.com

UNIVERSITY OF TWENTE.

NATIONAL HIGH MAGNETIC FIELD LABORATORY
Verification of tape I_c retention after high strain

Optimized 28-tape **CORC®wire**
- **CORC®**wire I_c retention 98 % at 7 % strain
- Extracted tape I_c retention 99 %
- Only tapes in the inner layer are damaged

Irreversible strain limit in **CORC®**wires can be increased significantly by minimizing the tape winding angle
Axial strain practical superconductors Master Plot

CORC® wires can now be engineered to have ξ_{tr}:
- twice as high as Nb-Ti
- 10 times as high as REBCO coated conductors
- 20 times as high as Nb$_3$Sn, Bi-2212 and Bi-2223

Accepted for publication: van der Laan et al. “High-temperature superconducting CORC® wires with record-breaking axial tensile strain tolerance present a breakthrough for high-field magnets” DOI https://doi.org/10.1088/1361-6668/ac1aae
CORC® wires with improved mechanical tensile strength

Critical stress limit under tension (12-tape CORC® wire)

- Critical stress limit with soft annealed copper former: 134 MPa
- Critical stress limit with half hard copper former: 280 MPa
- Critical stress limit with CuBe former: 613 MPa

Irreversible tensile stress limit of CORC® wires can be engineered to exceed 600 MPa at 77 K
Summary

First high-current CORC® insert solenoid successfully tested
• Operation at over 4.4 kA in 14 T background field, generating a peak field of 16.77 T
• Operated at 282 A/mm² and 275 MPa JBr source stress at 14 T background field

The helical winding of REBCO tapes is CORC® wires allows
• To mechanically decouple the ceramic REBCO film from the CORC® wires
• Reduce the strain transfer from the CORC® wire to the REBCO film
• Allow the irreversible strain limit under axial tension in CORC® wires to far exceed that of the REBCO tape
• This allows extremely high irreversible strain limits in CORC® wires of 7 %

Optimized CORC® wires have an irreversible strain limit under tension
• More than 10x that of REBCO tapes
• More than 20x that of other HTS and Nb₃Sn
• Double that of NbTi

Mechanically decoupling of the REBCO layer allows
• The CORC® wire strength under axial tension to be determined almost entirely on that of the former
• CORC® wires with very high critical stress exceeding 600 MPa at 77 K have been demonstrated