Successful Development of a 9.4T/800mm Whole-body MRI Superconducting Magnet at IEE CAS

Qiuliang Wang1,2*, Yinming Dai1, Hui Wang1, Junsheng Cheng1, Shunzhong Chen1, Yaohui Wang1, Hongyi Qu1, Xinning Hu1, Jianhua Liu1, Chunyan Cui1, Zili Zhang1, Lei Wang1, Hao Wang1, Hui Liu1, Jinhui Sun1, Wanshuo Sun1, Ling Xiong1, Cong Wang1, Dangui Wang1

1 Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Qiuliang Wang
Email: qiuliang@mail.iee.ac.cn

Abstract—The 9.4T whole-body MRI system is recognized as a powerful tool to explore the complex human bioinformatics and shows great application potential for the brain science research and early diagnosis of major neurodegenerative diseases. Due to the technical barrier of the 9.4T-level ultrahigh field superconducting magnet, only very few institutions in the world have the capability to apply the technology. Recently, the Institute of Electrical Engineering, Chinese Academy of Sciences (IEE CAS) successfully developed a 9.4T/800mm whole-body MRI superconducting magnet and the critical parameters all reach the project requirements. With the already prepared gradient assembly, RF assembly, and spectrometer console, the superconducting magnet will then go into the MRI system integration, which is arranged for the human metabolic imaging.

Keywords (Index Terms)—MRI, Superconducting magnet, Ultrahigh field, Metabolic imaging.

1. Introduction
Since the first human image of a 9.4 T whole-body magnetic resonance imaging (MRI) system issued by the University of Minnesota in 2006 [1], the significant advantage of 9.4T-level human MRI has more strengthened people’s confidence in MRI research towards ultrahigh magnetic field [2, 3]. With a strong magnet and gradient system, the 9.4T human MRI pushes the image resolution to a few hundred microns and even higher, which can observe the structure of human tissue in mesoscopic, providing more detailed physiological information to support structural pathological diagnosis and brain function analysis [4-6]. Moreover, the high signal-to-noise ratio of the ultrahigh magnetic field makes it feasible to image non-hydrogen elements with low abundance for the realization of multimodal imaging [7, 8]. For example, the elements Na23, K39, P31 and so on, are important components in human metabolites, and the tracking of these elements can provide critical metabolic information of the human body, which is potential to find a new therapy pathway for some complex diseases, such as Alzheimer’s disease, Parkinson’s Disease, and other neurodegenerative diseases [9, 10].

Up to the present, there are only several institutes in the world that have the capability to develop the 9.4T whole-body MRI techniques, for example, the University of Minnesota of the United States, Jülich Research Center of Germany, the Max Plank Institute of Germany, etc. Among the
systems, the most important hardware parts namely the main magnets, can be provided by very few professional companies, such as Tesla Engineering LTD Group. The extremely high technical difficulty of the ultrahigh-field large-bore superconducting magnet system has restricted the broad promotion of the 9.4T whole-body MRI [11].

At the end of October 2021, the Institute of Electrical Engineering, Chinese Academy of Sciences (IEE CAS) succeeded in exciting a 9.4T/800mm whole-body MRI superconducting magnet to the nominal magnetic field strength and then realized a persistent operation mode. The project started in 2011 to serve a major national science plan, which has gone through a nearly ten-year development period [12]. The self-developed superconducting magnet will be integrated into a complete MRI system to use for the metabolic imaging research.

2. Design and construction

The electromagnetic design pattern of the 9.4T/800mm MRI magnet adopts a compensating magnetic field optimization method to limit the peak magnetic field strength in the coils [13]. There are nine coils in total with five primary coils and four compensating coils. In addition, thirteen low-temperature shim coils were arranged outside the magnet coils, which include coils Z, X, Y, Z2, ZX, ZY, X2-Y2, XY, Z3, Z2X, Z2Y, Z(X2-Y2), ZXY. It requires about 5000L liquid helium to fill up the cryogenic container and there are four GM cryocoolers used to guarantee a zero helium-off. The cryogenic system design is shown in Fig. 1.

![Fig. 1 Cryogenic system design of the 9.4T/800mm MRI superconducting magnet](image)

Some typical fabrication process of the magnet is displayed in Fig. 2 [14, 15]. The completion of the magnet assembling was in 2018 and then a series of tests were conducted till the successful excitation.
3. Results and discussion

The acquired measurement parameters of the 9.4T/800mm MRI superconducting magnet are listed in Table I.

| Table I Critical design parameters of the 9.4T/800mm MRI superconducting magnet |
|---------------------------------|------------------|
| Central magnetic field strength | 9.46T |
| Magnetic field stability | 0.02ppm/h |
| Magnetic field homogeneity (without shimming) | 74.91ppm (peak-peak) |
| Magnetic field homogeneity (with superconducting shimming) | 15.82ppm (peak-peak) |
| Magnetic field homogeneity (with superconducting shimming and passive shimming) | 0.28ppm* (peak-peak) |
| Cryogenic performance | Zero boiling off with four GM cryocoolers |
| Warm bore size | 800mm |
| Magnet length | 3662mm |
| Magnet weight | 44.8t |

*The passive shimming parameter is a simulated value.

Fig. 3 shows the magnetic field measurement using a Metrolab PT2025 NMR magnetometer. The 1062-8-10M probe has a measurement range of 6.0-13.7T and requires a magnetic field homogeneity of 50-120 ppm/cm. The meter display that the magnetic field strength at the magnet center is 9.4559T, which has a good agreement with our designed field-current efficiency.
In order to test the magnetic field stability, we recorded the consecutive magnetic field data for three and a half days using the PT2025 NMR magnetometer. The magnetic field strength generally reflects a downtrend as shown in Fig. 4, although there are some fluctuations during the recording. Linear regression was applied to reveal the descending slope of the recorded data and it indicates a magnetic field decay rate of 0.02 ppm/h.

We also mapped the magnetic field distribution after the superconducting shimming operation over a 30cm sphere, which is illustrated in Fig. 5. The naked magnetic field homogeneity is
74.91ppm with peak to peak, that is 15.82ppm after superconducting shimming, and it is simulated to be 0.28ppm further with passive shimming.

![Fig. 5](image)

Fig. 5 Magnetic field distribution over a 30cm spherical volume: (a) magnetic field strength distribution (unit: T) and (b) magnetic field homogeneity distribution on the unwrapped spherical surface (unit: ppm)

The liquid helium consumption was observed by a high-precision liquid level meter. At the persistent mode, there is no obvious liquid level drawdown with one-week duration, which indicates a zero helium volatilization of the 9.4T/800mm MRI superconducting magnet system.

Since the target magnetic field strength has been achieved, we will go to shim the magnetic field for the next step, and then insert the self-developed gradient assembly and RF assembly. We hope to establish a complete MRI system to serve the brain science research program of China in the future.

4. Conclusion

A 9.4T whole-body MRI superconducting magnet has been developed successfully at IEE CAS and the core indices including the magnetic field strength, homogeneity, stability, cryogenic performance, fully meet the project requirements. The whole MRI system integration will be conducted afterwards.

Acknowledgements

This work was supported by the National Major Scientific Equipment R&D Project under Grant ZDYZ2010-2.
References

