Superconductor Electronics and the International Roadmap for Devices and Systems

D. Scott Holmes
Booz Allen Hamilton
College Park, MD, USA

Erik P. DeBenedictis
Sandia National Laboratories
Albuquerque, NM, USA

ISEC 2017
Sorrento, Italy
SCE and the International Roadmap for Devices and Systems (IRDS)

- How we got to IRDS
 - Electronics technology roadmaps
 - Rebooting Computing Initiative
- SCE (Superconductor Electronics)
 - Applications and Drivers
 - Benchmarking and Metrics
 - Technology Roadmaps
- Conclusions
Electronics Technology Roadmaps

- **1993-1997 NTRS**: National Technology Roadmap for Semiconductors

![Roadmap Table](image-url)
Electronics Technology Roadmaps

- **1993-1997 NTRS**: National Technology Roadmap for Semiconductors
- **1998-2013 ITRS**: International Technology Roadmap for Semiconductors
 - Applied Moore’s Law to integrated circuits
 - Physical scaling worked until about 2004, then cores, 3D, ...
 - 2010: First selection of post-CMOS devices

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPU Printed Gate Length (nm)</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>19.8</td>
<td>17.7</td>
<td>15.7</td>
</tr>
<tr>
<td>MPU Physical Gate Length (nm)</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>15.3</td>
<td>14.0</td>
<td>12.8</td>
</tr>
<tr>
<td>Trench width at top (nm) [A]</td>
<td>38.4</td>
<td>32.4</td>
<td>28.4</td>
<td>25.2</td>
<td>22.6</td>
<td>20.2</td>
<td>18.0</td>
</tr>
<tr>
<td>Trench sidewall angle (degrees) [B]</td>
<td>>88.2</td>
<td>>88.2</td>
<td>>88.5</td>
<td>>88.7</td>
<td>>88.8</td>
<td>>88.9</td>
<td>>88.0</td>
</tr>
<tr>
<td>Line edge roughness (nm) [C]</td>
<td>2.4</td>
<td>1.5</td>
<td>0.8</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Lgate 3σ variation (nm) [D]</td>
<td>2.65</td>
<td>2.42</td>
<td>2.21</td>
<td>2.02</td>
<td>1.84</td>
<td>1.68</td>
<td>1.53</td>
</tr>
<tr>
<td>Lgate line width roughness 3σ (nm) [E]</td>
<td>2.1</td>
<td>1.91</td>
<td>1.74</td>
<td>1.6</td>
<td>1.46</td>
<td>1.33</td>
<td>1.21</td>
</tr>
<tr>
<td>Across chip Lgate variation 3σ (nm) [F]</td>
<td>0.91</td>
<td>0.84</td>
<td>0.77</td>
<td>0.7</td>
<td>0.64</td>
<td>0.58</td>
<td>0.53</td>
</tr>
<tr>
<td>Across wafer Lgate variation 3σ (nm) [G]</td>
<td>0.55</td>
<td>0.5</td>
<td>0.46</td>
<td>0.41</td>
<td>0.38</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>Lot to lot Lgate 3σ (nm)</td>
<td>0.55</td>
<td>0.5</td>
<td>0.46</td>
<td>0.41</td>
<td>0.38</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>Dummy Gate Stack Removal Induced Lgate Variation 3σ (nm) [II]</td>
<td>0.59</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.42</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>Minimum measurable gate dielectric remaining (post gate etch clean) [II]</td>
<td>>0</td>
<td>>0</td>
<td>>0</td>
<td>>0</td>
<td>>0</td>
<td>>0</td>
<td>>0</td>
</tr>
<tr>
<td>Profile control (side wall angle) [J]</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>
Electronics Technology Roadmaps

- **1993-1997** **NTRS**: National Technology Roadmap for Semiconductors
- **1998-2013** **ITRS**: International Technology Roadmap for Semiconductors
 - Applied Moore’s Law to integrated circuits
 - Physical scaling worked until about 2004, then cores, 3D, ...
 - 2010: First selection of post-CMOS devices
- **2014-2015** **ITRS 2.0**
 - Driver changed from scaling to applications
 - 2015: Post-CMOS map of devices
- **2016+** **IRDS**: International Roadmap for Devices and Systems
 - Opened the door to non-semiconductor technologies
 - 2017: First roadmaps expected in November
Rebooting Computing

- IEEE Rebooting Computing
 - 2013-16: 3 summits, 1 conference

- Elie Track
 - IEEE Rebooting Computing co-chair
 - IEEE Council on Superconductivity past president
 - Hypres past president

- Erik DeBenedicts
 - Sandia National Laboratories
 - ITRS Emerging Research Architectures

- Paolo Gargini
 - ITRS Chairman 1998-2016
 - Intel Fellow and Director of Technology Strategy (retired)
Rebooting Computing Summit 2
- Goal Setting

2014 May 12-14
Santa Cruz, CA

D. Scott Holmes, Ph.D.
Facilitator
IRDS Organization

- International Focus Teams (IFTs)
 - Application Benchmarking
 - More Moore
 - **Beyond CMOS**
 - Memory
 - Logic
 - Charge state variable
 - Non-charge state variable
 - Spin
 - **Cryogenic Electronics** (here?)
 - **Cryogenic Electronics** (or here?)
 - Outside System Connectivity
 - Factory Integration
 - Metrology
 - Environment, Health, and Safety
 - Yield
 - System and Architecture (prelim.)

SCE and the International Roadmap for Devices and Systems (IRDS)

- How we got to IRDS
 - Electronics technology roadmaps
 - Rebooting Computing Initiative

- SCE (Superconductor Electronics)
 - Applications and Drivers
 - Benchmarking and Metrics
 - Technology Roadmaps

- Conclusions
SCE Applications and Drivers

<table>
<thead>
<tr>
<th>Application</th>
<th>Drivers</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research & development</td>
<td>Quantum information processing, advanced sensors, computing, government funding</td>
<td>Foundries, process design kits, process capability, layer count, feature sizes, yield</td>
</tr>
<tr>
<td>Metrology</td>
<td>Voltage standard</td>
<td>Accuracy, precision, voltage range, frequency range (for ac)</td>
</tr>
<tr>
<td>RF signal processing & control</td>
<td>RF processor</td>
<td>Clock rate, signal-to-noise ratio, bandwidth</td>
</tr>
<tr>
<td>Data pre-processing</td>
<td>DSP: digital signal processor</td>
<td>Clock rate, throughput, bits, circuit density</td>
</tr>
<tr>
<td>Network routing</td>
<td>SOC-NW: system-on-chip, networking</td>
<td>throughput</td>
</tr>
<tr>
<td>High performance computing</td>
<td>MPU-HP: microprocessor unit, high performance</td>
<td>Floating point computation, memory performance, data rate, chip area, physical volume, energy efficiency</td>
</tr>
<tr>
<td>Data center</td>
<td>Microserver</td>
<td>Integer computation, memory performance, data rate, chip area, physical volume, energy efficiency</td>
</tr>
</tbody>
</table>
SCE Benchmarking and Metrics

- Superconducting SFQ looks good based on switching energy-delay, but:
 - Refrigeration requires x400 to x5000 energy
 - Wiring + leakage losses dominate for other technologies

- Conclusions:
 - Full system evaluation is required for SFQ
 - Better metrics and figures-of-merit needed!

https://www.nsa.gov/research/tnw/tnw203/article2.shtml
Energy–Delay Metrics: 32 bit Add

- **RQL**: Reciprocal Quantum Logic, a superconducting single flux quantum (SFQ) logic;
 \[J_c = 100 \text{ µA/µm}^2, \text{ 12.1 GHz} \]
 - **RCA**: ripple-carry adder
 - **STPPA**: sparse-tree parallel-prefix adder

- 4.2 K operation; energy at room temperature with 1000 W/W refrigeration (range \(I : 400–10,000 \text{ W/W} \))

Source for RQL data:
doi: 10.1109/TASC.2014.2368354 (Table I)

Added to:
doi: 10.1109/JXCDC.2015.2418033

FIGURE 5. Switching energy versus delay of a 32-bit adder.
Energy–Delay Metrics: 32 bit ALU

- **RQL**: Reciprocal Quantum Logic, a superconducting single flux quantum (SFQ) logic;
 \[J_c = 100 \mu A/\mu m^2,\ 16.3 \text{ GHz},\ 205 \text{ fJ/op (32 bit), 402 ps} \]

- 4.2 K operation; energy at room temperature with 1000 W/W refrigeration (range \(I : 400 \text{–} 10,000 \text{ W/W} \))

Source for RQL data:
doi: 10.1109/TASC.2014.2368354 (Table I)

Added to:
doi: 10.1109/JXCDC.2015.2418033

FIGURE 6. Switching energy versus delay of a 32-bit ALU.
Energy–Delay Metrics: Wiring

- **RQL**: Reciprocal Quantum Logic, a superconducting single flux quantum (SFQ) logic, \(J_c = 100 \, \mu A/\mu m^2 \)
 - **JTL**: Josephson transmission line
 - (0.13 fJ/bit, 5.5 ps)
 - **PTL**: passive transmission line
 - (0.26 fJ/bit 0.01–20 mm, 6.5 ps)

- 4.2 K operation; energy per bit at room temperature with 1000 W/W refrigeration (range 1: 400–10,000 W/W)

 doi: 10.1109/TASC.2014.2368354 (Fig. 1)

- **Added to**: Pan, Chang, Naeemi, "Performance analyses and benchmarking for spintronic devices and interconnects," 2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC), San Jose, CA, 2016. doi: 10.1109/IITC-AMC.2016.7507679

Fig. 5. Comparison between CMOS and spintronic devices in terms of (a) wire energy versus delay
Metric: Throughput & Power Density

- **RQL**: Reciprocal Quantum Logic, a superconducting single flux quantum (SFQ) logic; \(J_c = 100 \mu A/\mu m^2 \), 16.3 GHz, 9950 JJs, 205 fJ/iop (32 bit), \(~5.6 \text{ mm}^2\)

 - 4.2 K operation; energy at room temperature with 1000 W/W refrigeration (range \(I : 400–10,000 \text{ W/W} \))

- Source for RQL data:

 - Private communication for areas (250 nm process)

- Added to (10 nm processes):

FIGURE 8. Dissipated power versus computational throughput (capped at 10 W/cm²) related to a 32-bit ALU.
Metrics: Next Steps

- **Models** for devices and circuits
 - Variety of superconductor technologies (e.g., RSFQ, AQFP)
 - Core metrics: circuit area, delay, and energy
 - Scaling models

- **Metrics** for applications
 - Logic, Memory, Interconnects

- **Refrigeration**: standard multipliers (vs. operating T, capacity) and ranges
SCE Technology Roadmap

- 15+ year span
 - Current (-1)
 - Near term (0 to +7)
 - Long term (+8 to +15)
 - Will be far less detailed than for CMOS

- First roadmap for digital computing

- Key areas:
 - Foundry and fabrication processes
 - Circuit parameters
 - Design tools
 - Packaging and integration
Past roadmaps provide a base for future efforts

Balance

- Progress (distance)
- Speed of Innovation (change rate × difficulty)
Conclusions

- IRDS is a **golden opportunity** for SCE
- Your participation is encouraged!