Probing the Effect of Interface on Pinning Efficiency of 1D BaZrO$_3$ and BaHfO$_3$ Artificial Pinning Centers in YBa$_2$Cu$_3$O$_{7-x}$ Thin Films

Judy Wu1, Bibek Gautam1, Mary Ann Sebastian2, Shikhar Mishra3, Jijie Huang3, Shihong Chen1,5, Javier Baca1, Joseph Prestigiacomo4, Timothy Haugan2, Haiyan Wang3, Mike Osofsky4, and Zhongwen Xing5

1 Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
2 U.S. Air Force Research Laboratory, Propulsion Directorate, WPAFB, OH 45433, USA
3 School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
4 US Naval Research Laboratory, 4555 Overlook Ave, SW Washington, DC 20375, USA
5 College of Engineering and Applied Science, Nanjing University, Nanjing, Jiangsu 210093, China

E-mail: jwu@ku.edu

Abstract – C-axis aligned one-dimensional artificial pinning centers (1D APCs) have proven to provide an effective solution to reduce the magnetic field (H) orientation-dependence of the critical current density, J_c, an issue stemming from the layered structure of YBa$_2$Cu$_3$O$_{7-x}$ (YBCO). A fundamental question arises as to what determines the pinning efficiencies of a 1D APC? In order to shed light on this question, 1D APCs of BaZrO$_3$ (BZO) and BaHfO$_3$ (BHO) of comparable lateral dimensions (5-6 nm) were selected in our recent studies on the 1D APC/YBCO interface and its impact on the pinning efficiency of these 1D APCs in the 1D APC/YBCO nanocomposite films with APC doping levels varied in the range of 2-6 vol.%. We have found that the BZO/RE-123 interface is semi-coherent with a large number of dislocations consistent with prior reports. In contrast, the BHO/RE-123 interface remains coherent even at high BHO doping levels. This difference was found to have a profound effect on the pinning efficiency of BZO and BHO 1D APCs evaluated quantitatively from the maximum pinning force density ($F_{p,max}$) at H_{max} ($H//c$) and the ratio between H_{max} and the accommodation field H^* estimated from the TEM characterization of the 1D APC concentration. Importantly, a record high $F_{p,max}$ of 183.0 GNm$^{-3}$ at $H_{max}>9.0$ T (instrument limit) and 65 K was obtained in BHO/YBCO nanocomposites, which is significantly higher than the $F_{p,max}$ of 73.0 GNm$^{-3}$ at $H_{max}=5.0$ T in its BZO/YBCO counterpart. Moreover, the H_{max}/H^* ratio in both cases decreases monotonically with APC doping. However, it is up to 2.5-3.5 in the BHO/YBCO case in contrast to the maximum of 0.6-0.7 in the BZO/YBCO case. This result reveals the critical effect of APC/YBCO interfaces on the pinning efficiency of 1D APCs.

Acknowledgements:
This research was supported in part by NSF contracts Nos: NSF-DMR-1337737 and NSF-DMR-1508494, the AFRL Aerospace Systems Directorate, the Air Force Office of Scientific Research (AFOSR), and the U.S. National Science Foundation (DMR-1565822) for TEM characterization.

Keywords (Index Terms) – YBCO nanocomposite film, artificial pinning center, vortex pinning efficiency, coherent interface.