AmpaCity Project Update
40 MVA HTS Cable and Fault Current Limiter Installation in City Center

Mark Stemmlle, Kai Allweins, Frank Merschel, Mathias Noe, Achim Hobl
AmpaCity Project Objectives

> Installation of 10 kV, 40 MVA HTS system in the German City of Essen

 • Project started in September 2011

 • Complete system installation in 3rd quarter of 2013

 • Commissioning in 4th quarter of 2013

 • Project duration of 4.5 years

 • Funded by the German Federal Ministry of Economics and Technology

> Investigation of technical feasibility of HTS systems in distribution grids

> Investment comparison of 10 kV HTS systems as alternative to conventional 110 kV systems

> Evaluation of technical operation advantages during demonstration period

> Assessment of further HTS cable and FCL technology applications
AmpaCity Milestones

- **Project start in September 2011**
- **Prototype manufactured in October 2012**
- **Type test completed in February 2013**
- **Start of component manufacturing in March 2013**
- **Groundbreaking ceremony on April 9th, 2013**
- **System installation on site Sept. until Dec. 2013**
- **Commissioning test on December 16th, 2013**
- **System commissioning on March 10th, 2014**
- **Pilot operation from 2014 until 2016 in progress**
Prototype Setup for Type Test
Prototype Joint and Termination
Type Test Sequence Prototype Setup

- Testing in accordance to DIN VDE 0276-620
- PD test at 20 kV (after 24 kV for 1 min)
- 20 load cycles with 2.3 kA (3 phase)
- PD test at 20 kV (after 24 kV for 1 min)
- Lightning impulse test at ± 75 kV
- AC voltage withstand test at 30 kV (4 h)
Load Cycle Test Setup
Lightning Impulse Test Setup
AmpaCity Installation in Essen

Substation Dellbrügge

Cable Joint

Substation Herkules

Luftbild: "Darstellung aus HK Luftbilder / Karten Lizenz Nr. 197 / 2012 mit Genehmigung vom Amt für Geoinformation, Vermessung und Kataster der Stadt Essen vom 13.02.2012"
Loading of Cable Drum in Hannover
Cable Drum Trailer at Joint Bay
Preparation of Cable Pulling
Cable Pulling First Length
Installation in Substation Dellbrügge
Termination in Substation Dellbrügge
Installation of Cable Joint
Nitrogen Storage Tank at Substation Herkules
Cooling System Delivery at Substation Herkules
Fault Current Limiter Delivery at Substation Herkules
HTS System Installation at Substation Herkules
Cooling Down of Cable System December 2013
Temperatures During Cooling Down

Temperature Inlet Substation Herkules
Temperature Outlet Substation Herkules
Temperature Substation Dellbrügge

Temperature in K

Commissioning Test

> Standard cable testing with cable test van

> PD test of each phase (20 kV at 0,1 Hz)

> Loss factor diagnoses (10 kV, 15 kV, 20 kV at 0,1 Hz)

> AC voltage withstand test (30 kV at 0,1 Hz for 1 h)
Commissioning Test with Cable Test Van
System Commissioning in March 2014

> Voltage test with HTS system connection only in substation Herkules

> Current testing with reactive power transfer between two transformers

> System connection in both substation for test operation in the grid
Cooling System

- 4 kW cold power at 67 K
- Subcooled pressurized nitrogen
- Forced flow in closed circuit
- High availability and reliability
Inlet and Outlet Temperatures

1. Temperature Inlet Substation Herkules
2. Temperature Outlet Substation Herkules
3. Temperature Substation Dellbrügge

- 1. $dT = \pm 0.135 \text{ K}, T_{\text{max}} = 68.11 \text{ K}, T_{\text{min}} = 67.84 \text{ K}$
- 2. $dT = \pm 0.06 \text{ K}, T_{\text{max}} = 70.11 \text{ K}, T_{\text{min}} = 69.98 \text{ K}$
- 3. $dT = \pm 0.24 \text{ K}, T_{\text{max}} = 77.45 \text{ K}, T_{\text{min}} = 76.97 \text{ K}$
Inlet and Outlet Pressures

1. Pressure Inlet Substation Herkules
 \[dP = \pm 0.08 \text{ bar}, \ P_{\text{max}} = 8.71 \text{ bar}, \ P_{\text{min}} = 7.91 \text{ bar} \]

2. Pressure Outlet Substation Herkules
 \[dP = \pm 0.23 \text{ bar}, \ P_{\text{max}} = 6.81 \text{ bar}, \ P_{\text{min}} = 5.68 \text{ bar} \]

3. Pressure Substation Dellbrügge
 \[dP = \pm 0.08 \text{ bar}, \ P_{\text{max}} = 8.21 \text{ bar}, \ P_{\text{min}} = 7.42 \text{ bar} \]
Mass flow in g/s

\[\text{Mass-flow} \ (\text{dm/dt}) \]

\[dF = \pm 6.4 \text{ g/s}, F_{\text{max}} = 430.2 \text{ g/s}, F_{\text{min}} = 417.5 \text{ g/s} \]
System Losses

Total Losses \(((T_{out} - T_{in}) \cdot c_p \cdot dm/dt) \)

\[dQ = \pm 147 \text{ W}, \quad Q_{\text{max}} = 1940 \text{ W}, \quad Q_{\text{min}} = 1646 \text{ W} \]
LN₂ Level Storage Tank

Filling Level LN₂ Storage Tank

Filling Level in %

27.07.
28.07.
29.07.
30.07.
31.07.
01.08.
02.08.
03.08.
04.08.
05.08.
06.08.
07.08.
08.08.
09.08.
10.08.
11.08.
12.08.
13.08.

22.8 tons
Current & Voltage

System Loading

Current in A

Voltage in kV

SUN

SUNSAT

27.07.

28.07.

29.07.

30.07.

31.07.

01.08.

02.08.

03.08.

04.08.

05.08.

06.08.

07.08.

08.08.

09.08.

10.08.

11.08.

12.08.

13.08.
Conclusions

> Type test of Ampacity system was successfully completed

> All system components were manufactured

> System installation was realized in less than 3 month

> HTS System was successfully commissioned

> AmpaCity HTS System is in operation
Thank you very much for your attention

Dr. Mark Stemmle
Nexans Deutschland GmbH
Kabelkamp 20
30179 Hannover
mark.stemmle@nexans.com