HTS Cable Technology – A Chance for Addressing the Challenges of Energy Transition

Werner Prusseit
THEVA Dünnschichttechnik GmbH

Virtual CCA 2021
11.10.2021
WHY HTS CABLES?

The perspective of a grid operator

Our task: Reliable, uninterrupted power supply
Not our job: Making experiments in our grid

Why bother with HTS technology?

- Cool, disruptive technology
- Energy efficiency
- Cooling is reliable
- Can transport lots of power
- HTS can be cheaper

Only 6% grid losses - 1.5% at HV
No cooling even more
We have proven solutions
Customer pays the bill

No incentive
External urge necessary

Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.
The times they are changin’

Bob Dylan, 1963

Energy Transition: Challenge and Chance
Climate Change is the Biggest Threat for Mankind

No combustion of fossil fuels – nowhere!

Better get ready for it

The world is getting fully electric

Protect your infrastructure

Make it resilient against flooding, hurricanes, drought & fire, ice, overloads
FACING EUROPEAN TRANSMISSION CHALLENGES

EUROBAR
- **European Offshore Grid**
 - Sharing offshore wind and making it base load capable
- **Trans-European Network**
 - DE: in 33 TWh; out 50.5 TWh (10%)
 - Net export 2020: 17.5 TWh
- **Integration of Power to Gas**
 - Hydrogen infrastructure
- **Strengthening domestic transmission grid**
 - from coast to consumer

Amprion: major TSO in Europe

© THEVA Dünnschichttechnik GmbH 2021
ENERGY TRANSITION IN GERMANY

Phasing out nuclear power by 2022: 11 GW

balanced by redundancy & renewables

but, the main challenge is yet to come

Phasing out coal power plants by 2038: 50 GW

requires renewables plus strongly enhanced grid

Coal power plants in Germany

Active coal power plants with net power generation capacity in megawatt (MW)

Phasing out coal power plants by 2038: 50 GW

requires renewables plus strongly enhanced grid

Long distance transport: HVDC

- New development: 525 kV\textsubscript{DC} XLPE cables
- 800 km from north to south (new routes)
- Point to point connections
- Huge, expensive converter stations

TSOs opening for innovation

OEM develop innovative solutions

Political urge
THE DISTRIBUTION CHALLENGE – GETTING GIGAWATTS IN CONGESTED AREAS

Fossil fuel substituted by electric energy

• Mobility
• Heating
• Industrial processes

Increasing energy consumption

• Increasing city population
• Demographic change
• IT, communication, air-conditioning

Bottleneck existing distribution grids

• Aging infrastructure
• Design / capacity
• Losses ⇒ CO₂

Strengthening and renewal of grid infrastructure necessary
How Would a TSO Prefer to Transport Gigawatts?

The standard solution – AC transmission in OHL

AC allows easy transformation between voltage levels from long range EHV to short range MV and LV

Overhead Lines (OHL)

<table>
<thead>
<tr>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheapest and easiest solution</td>
<td>High risk of damage (exposure)</td>
</tr>
<tr>
<td>Accessibility</td>
<td>No public acceptance</td>
</tr>
<tr>
<td>No capacitive reactive power P_X</td>
<td>Long legal disputes & approval procedures</td>
</tr>
<tr>
<td>Long distances without compensation</td>
<td></td>
</tr>
</tbody>
</table>

Historically, OHL constitute 90+% of our transmission grid

Today – practically no new OHL feasible

Public urge
Invisible Transport and Distribution of High Power?

<table>
<thead>
<tr>
<th>AC cables</th>
<th>DC cables</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Dominating in urban distribution (LV, MV, HV)</td>
<td>▪ High power, long distance transport</td>
</tr>
<tr>
<td>▪ High power transport: only few, short EHV</td>
<td>▪ Submarine cables connecting countries/wind farms</td>
</tr>
<tr>
<td>▪ Intermediate connections (380 kV, < 25 km)</td>
<td>▪ Germany: South-Link: 525 kV, 800 km</td>
</tr>
<tr>
<td>▪ Expensive (civil engineering)</td>
<td>▪ No reactive power, no length limit</td>
</tr>
<tr>
<td>▪ High capacitive reactive power (\alpha U_0^2)</td>
<td>▪ Point to point connections – no grid</td>
</tr>
<tr>
<td>▪ Limited length w/o compensation (380 kV, 25 km)</td>
<td>▪ Huge, expensive converter stations</td>
</tr>
</tbody>
</table>

Cables are used where space, public and environment don’t allow OHLs
Long distance and submarine connections only by DC cables
Unique Selling Propositions of HTS Cables

- **Current instead voltage**
 - transport of high power at lower voltage level
 - low reactive power, long length without compensation

- **High power density – small footprint**
 - compact laying, reduced cost and obstruction

- **No environmental impact**
 - no warming, EM-emissions, interference

2 GVA Power Transport Options

<table>
<thead>
<tr>
<th>Spec</th>
<th>HVAC-XLPE</th>
<th>HTS - AC</th>
<th>HVDC-XLPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (kV)</td>
<td>380</td>
<td>110</td>
<td>±525</td>
</tr>
<tr>
<td>Current (A)</td>
<td>1600</td>
<td>5,250</td>
<td>1900</td>
</tr>
<tr>
<td>Max. length (km)</td>
<td>25</td>
<td>200+</td>
<td>no limit</td>
</tr>
<tr>
<td>Cable system</td>
<td>2 × 3 = 6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Width: OP/(Constr.) (m)</td>
<td>10 (25)</td>
<td>1 (5)</td>
<td>5 (10)</td>
</tr>
</tbody>
</table>

Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.
What needs to be done?

- Proof of compactness: 500+ MW in Ø15 cm
- Demonstrate long (10+ km) distance cooling
SuperLink Project
SuperLink Project Team

<table>
<thead>
<tr>
<th>Organization</th>
<th>Role Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadtwerke Munich</td>
<td>Utility for 400 V – 400 kV urban infrastructure</td>
</tr>
<tr>
<td>NKT Cables Group</td>
<td>HTS cable system manufacturer</td>
</tr>
<tr>
<td>Linde Group</td>
<td>Technical gases cryogenics and cryogenic systems</td>
</tr>
<tr>
<td>THEVA</td>
<td>HTS tape manufacturer project development</td>
</tr>
<tr>
<td>Univ. of Appl. Science South Westfalia</td>
<td>High voltage and cable testing</td>
</tr>
<tr>
<td>Karlsruhe Institute of Technology</td>
<td>Power systems electromagnetic and thermal modelling</td>
</tr>
</tbody>
</table>
URGING PROBLEM OF THE CITY UTILILITY

Rebuilding the distribution grid and establish a 500 MVA connection across the city

▪ **Necessary change** in cable technology
 Non-availability of gas-pressure cables

▪ **Strong renewal pressure**: 80+ % cables installed before 1980
 Enormous volume >90 HV cable sections

▪ **Connection of gas power station** in the south to transmission grid (NW) across the city

▪ **Avoidance of new 400/110 kV main substation** (space, cost)
Alternative Solutions

Transport of 500 MVA over 12 km

- **400 kV XLPE cable system**
 - E.g. tunnel solution, as in Berlin, London etc.
 - Same for GIL

- **400 kV overhead line**
 - Not feasible in the city

- **Multiple 110 kV XLPE cable systems**
 - 5 systems & routes
 - Limited bending radii
 - Soil warming (spacing)

- **110 kV HTS cable**
 - Novel technology

© THEVA Dünnenschichttechnik GmbH 2021
Alternative Solutions - Assessment

Transport of 500 MVA across 12 km in densely populated area

<table>
<thead>
<tr>
<th>Criteria</th>
<th>400 kV XLPE</th>
<th>400 kV OHL</th>
<th>Multiple 110 kV</th>
<th>110 kV HTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum space</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Public acceptance</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Economic feasibility</td>
<td>😞</td>
<td>😊</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Technical maturity</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
</tr>
<tr>
<td>City grid integration</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>Power density</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Low loss</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
</tr>
</tbody>
</table>

The HTS option is very attractive – but needs development
City Utility’s Conclusion

HTS appears as unique & attractive solution

The 110 kV HTS cable solution …

- is the economically and technically most reasonable solution for the future urban power supply
- has minimum impact on environment, urban life and traffic
- minimizes obstruction of residents during construction and operation
- provides flexibility even at increasing consumption of electrical power
- improves the energy efficiency and carbon footprint of the distribution grid
- is an option for smart conversion of the city grid saving $\frac{1}{3}$ of all HV cables
SUPERLINK CABLE PROJECT GOALS

Setting the stage for a long, high-power HTS cable connection in Munich

Development goals

- **Design concept** for a 12+ km long 110 kV cable line with all components and auxiliaries
- Capacity 500+ MVA in a **compact, single cable**
- **Closed cooling cycle & distributed cooling over 12+ km**
- Development and type testing of all components:
 - cable, joints, terminals, efficient cooling substations
- In-grid testing of a **150 m long demo cable** in substation
- Project term: 10/2020 – 3/2023
SUPERLINK CABLE DESIGN

Cable design
- 3 phases in one cryostat
- Superconducting phases and screens
- 110 kV, 500 MVA, 2.6 kA\(_{\text{rms}}\)
- Fault current resilient 40 kA for 1 s
- Black start capability
- Separate LN return pipe (single, one-way cable)

HTS conductor

Main manufacturing focus:
- Cost efficient production
- High yield processes (e.g. Laser-slitting)

- Robust, thick Cu-laminated conductor
- Width 3 mm to reduce AC-losses
Distributed Cooling System

- **Subcooled Liquid nitrogen (LN)**
- **Main cooling station**
- **Intermediate cooling station**
- **Terminal cooling station**
- **Refrigeration**

Cryo distribution

Options for cryofluid:
- Nitrogen
- Nitrogen-oxygen mix (e.g. air)

Liquid nitrogen supply (LN)

1. Cool down

Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.
Economic Efficiency of HTS Cables
INDICATIONS FOR FAVOURABLE ECONOMICS – A CHECK LIST

CAPEX

- Transport at lower voltage level („Current instead Voltage“)
 (HV instead EHV, MV instead HV)
- Scarce underground space, reduced civil engineering
 Urban retrofit (substitute gas pressure- or oil cables)
 Obstacles, crossings, difficult terrain

OPEX

- High current, heavy duty application
- High load factor and utilization ($\eta > 50\%$)
 Moderate load profile / fluctuations ($d\eta/dt$)
- Additional monetary benefits (e.g. cold gas, LN-pipeline)
 - Economic benefits (minimally invasive)
 - Resource efficiency (materials, construction, „ecological footprint“)
 - Public acceptance („not in my backyard“)

© THEVA Dünnchichttechnik GmbH 2021
COST ASSESSMENT – COMPARING STANDARD XLPE TO HTS CABLES

Higher HTS cable costs need to be balanced by other savings

Business cases for HTS cables

- Higher HTS cable costs over-compensated by lower costs of civil engineering, switchgear etc.
- **OPEX lower**, when average utilization > 50%
- **Medium voltage sweet spot** at 40-80 MVA if HV level can be avoided (smaller towns); very HTS cost sensitiv
- **High power transport 200+ MVA**
 HTS competitive to multiple HV- or EHV-cables; smaller HTS cost sensitivity
SUMMARY

HTS cables are a new tool to handle high power distribution in densely populated areas

➢ GVA distribution into metropolitan areas (e.g. Rhine-Ruhr area)
➢ Flexible cables fitting in city ducts with high current carrying capacity
➢ Reduced reactive power allows distances 100+ km without compensation
➢ Submarine cables and interconnects (under investigation)

The SuperLink project is a blueprint for a high power transmission cable

➢ High power in compact cable at distribution voltage level (instead of EHV)
➢ Distributed cooling over long distance
Why HTS Cables?

Why bother with HTS technology?

Because you will need it!
Thank you!

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag