Transport Properties of IMD-processed 100 m Class 6-filament MgB₂ Wire and Solenoid Coil

Dongliang Wang¹, Yanwei Ma¹, Da Xu¹, and Satoshi Awaji²

¹ Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
² High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

E-mail: dongliangwang@mail.iee.ac.cn

Abstract—100 m long 6-filament MgB₂ wire was successfully fabricated using the internal magnesium diffusion (IMD) process [1]. We investigated the transport properties and the uniformity of this long multifilament IMD wire. The MgB₂ layer and the sub-filament region are regular, and the J_c values have a fairly homogenous distribution throughout the wire, suggesting that there were no obvious defects along the length of the wire. A layer J_c as high as $1.2 \times 10^5 \text{ A/cm}^2$ at 4.2 K and 8 T was obtained, which was comparable to the highest value of the long multifilament IMD wire reported so far. We also made and tested two IMD-processed MgB₂ solenoid coils using 26 m long 6-filament wires. The coils were prepared by using a wind-and-react method and cooled by liquid helium. The coil I_c values measured at 4.2 K are almost equal to the estimated I_c values of short length wire, suggesting that the long multi-filamentary wire has sufficient longitudinal homogeneity. These results indicate that the long multifilament IMD-processed MgB₂ superconducting wire is suitable for practical applications.

Keywords (Index Terms)—MgB₂ wire and coil, internal magnesium diffusion, uniformity, transport properties.