Outline

1. HISTORY
 - Discovery of YBCO
 - Features of YBCO
 - Architecture of Coated Conductors
 - Japanese Contributions (IBAD, Self-epitaxy, PLD, MOD)

2. PRESENT STATUS
 - Higher In-field I_c by APC Control
 - Lower AC Losses & Control of Magnetic Relaxation by Filamentation

3. FUTURE PROSPECTS
 - Lowering Cost
 - Higher Performances
 - New Concept of “ISOTROPIC C.C.”
1. HISTORY

- Discovery of YBCO
- Features of YBCO
- Architecture of Coated Conductors
- Japanese Contributions
 (IBAD, Self-epitaxy, PLD, MOD)
The First HTS Wires (1987)

Powder in Tube (PIT): Y$_2$O$_3$ BaO CuO
Sintering: @900-1000 °C, O$_2$ Annealing: @400 °C

Y-Ba-Cu-O (Ag sheath)
wire dia.: 1.5mm φ core dia.: 0.77mm φ

Before heat treatment

After heat treatment

YBCO : 4.1x103 A/cm2 (@77K, s.f.)
BSCCO: 3.5x104 A/cm2 (@77K, s.f.)
Serious Effect of Misalignment Angle at Grain Boundaries on J_c

(a) [001]-tilt
(b) [010]-tilt, valley
(c) [010]-tilt, roof
(d) [100]-twist

Architecture of 2nd Generation Coated Conductor (C.C.)

In-plane Grain Alignment
Thick Film for High I_c
Introduction of Flux Pinning Centers
High Rate Deposition
Long Length Stable Deposition
Uniformity

Epitaxial growth of REBCO on the textured buffer layer!
$\rightarrow >10^6 \text{ A/cm}^2@77\text{K}, \text{s.f.}$

Stabilizing Layer
Ag, Cu etc
(10~30 μm)

SC Layer
Y-123, Sm-123, Gd-123, Eu-123, RE(Alloyed)-123 (1~3 μm)

Buffer Layer
MgO, GZO, YSZ, CeO$_2$, LMO, Y$_2$O$_3$ etc. (<3 μm)

High Mechanical Strength
Non-Magnetic Material
Thin and Smooth Surface
(RABiTS: Fine Grain alignment)

Metallic Substrate
Hastelloy™ etc, Ni-base Alloy, Stainless Steel (SUS)
RABiTS: (Ni, Ni-W, Cu, Ag, Clad-composite)
(50~100 μm)
Advantages of REBCO C.C.

< Cost >

- Y-system
- Bi-system

< J_e - B Property >

< Mechanical Strength >

- Y-system

< Low AC Loss >

- Aspect ratio
 - Bi: Y = 1:10
 - For scribing:
 - Y: Layer structure ⇒ Easy
 - Bi: Sheath ⇒ Difficult

B // Tape Surface

B ⊥ Tape Surface

Tension Test

- 1/10
 - Possible to scribe
National Projects in JAPAN

Fundamental Materials Science & Engineering

Materials, Science & Processings

Fundamental Technologies for Superconductivity Applications Phase I, II
YBCO C.C.

Superconductive Generator Equipment (LTS) and Materials (Super-GM)

Superconducting Generator (SCG)

SMES system (LTS) Basic Technology

SMES system (LTS)

SC Power Network (LTS-SMES)

Power Device Applications

HTS Flywheel Energy Storage

SC Magnetic Bearing for FW

SC Power Network System (FW)

AC Power Device Cable, FCL, etc.

AC Power SC Equipment (Super-ACE)

Bi-Cable (AC) (Field Test)

M-PACC C.C. SMES Cable Transformer

HTS Coil for Medical Application

C.C. MRI Heavy Iron Accelerator

Japanese Contribution for C.C.
- Bi-axial Grain Alignment by IBAD -

IBAD (Ion Beam Assisted Deposition) Process

On Randomly Oriented Polycrystalline Metallic Substrate

by Fujikura Ltd. in 1991

Introduction of a buffer layer with in-plane grain alignment
Improvement of Rate in US for IBAD

Problem in IBAD of Early Stage (YSZ & GZO)

→ *Long Time for Alignment*
 (e.g. 4hr for $\Delta \phi \sim 10^\circ$)

Drastically Shortening Time for Alignment in U.S.

GZO → MgO
 (e.g. 2 min. for $\Delta \phi \sim 10^\circ$)

Ref: C.P. Wang et al. APL vol.171(1997)2955

Japanese Contribution for C.C.
- Bi-axial Buffer by Self-epitaxy -

Definition: in-plane misorientation angle ($\Delta \phi$) decreases with increasing film thickness
(discovered by Muroga et al. in 2002)

![Graph showing $\Delta \phi$ vs. thickness of CeO$_2$](image)

Japanese Contribution for C.C.
- Bi-axial Buffer by Self-epitaxy -

Drastic changes in the grain sizes at the interface

IBAD-MgO

IBAD-Gd₂Zr₂O₇

PLD-CeO₂

CeO₂/IBAD-Gd₂Zr₂O₇

CeO₂/ (LMO) / IBAD-MgO

Hastelloy

1μm

CeO₂

LMO

MgO

1nm

Deposition time, t (min)

Δφ (°)

100

10

1

0.1

1

10

100
Japanese Contribution for C.C. - MPMT-PLD Process for REBCO -

Multi-Plume & Multi-Turn PLD

- \(YBCO \) layer deposition temperature: 800 ~ 850 °C
- Oxygen pressure: 200 mTorr
- Laser beam energy: 500 mJ
- Repetition rate of laser pulse: 160 Hz,
 (divided to 4-plumes with laser pulse of 40 Hz each)

- Production Rate
- High Material Yield
- Controlled Supersaturation

Japanese Contribution for C.C.
- GdBCO for PLD -

Advantage of GdBCO
High I_c & J_c, High I_c - B - θ, High Production Rate

High I_c & J_c:
$I_c > 200A/cm^2$, $2MA/cm^2$ (@77K, self-field)

High I_c - B - θ:
In-Field $I_c > 20A/cm^2$ (@77K, 3T)

High Production Rate
30m-GdBCO @10 m/h (YBCO 3.75 m/h)
Long Length C.C. @Fujikura(ISTEC)

PLD(GdBCO)/IBAD Coated Conductors

<table>
<thead>
<tr>
<th></th>
<th>Piece Length</th>
<th>$I_c,_{max}$</th>
<th>$I_c,_{min}$</th>
<th>$I_c,_{ave}$</th>
<th>Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire A</td>
<td>621 m</td>
<td>700 A</td>
<td>649 A</td>
<td>677 A</td>
<td>7.5 %</td>
</tr>
<tr>
<td>Wire B</td>
<td>700 m</td>
<td>590 A</td>
<td>555 A</td>
<td>575 A</td>
<td>6.1 %</td>
</tr>
<tr>
<td>Wire C</td>
<td>587 m</td>
<td>562 A</td>
<td>533 A</td>
<td>550 A</td>
<td>5.2 %</td>
</tr>
</tbody>
</table>

$\frac{I_c}{cm \cdot w} @ 77 K, s.f.$

Uniformity: $\frac{\{I_c,_{max} - I_c,_{min}\}}{I_c,_{ave}} \times 100$

$I_c \times L = 577 (A) \times 1040 (m) = 600 (kAm)$
Japanese Contribution for C.C.
- Fundamental Analysis of TFA-MOD -

High I_c due to Ba-deficient Composition

Low Cost Process

Ba-rich: Huge pores
Ba-deficient: Smaller and less pores,
$CuO/Y_2Cu_2O_3$ particles in the 123 grains

$Y:Ba:Cu = 1:2:3$
$Ba/Y = 2.0$

$Y:Ba:Cu = 1:1.5:3.0$
$Ba/Y = 1.5$

Ba-deficient ($Ba/Y < 2.0$)

Ba-rich ($Ba/Y > 2.0$)

Molar Ratio of Ba/Y in Starting Solution

$J_c (MA/cm²@77K, s.f.)$
Long Length C.C. @ SWCC(ISTEC)

TFA-MOD(YBCO)/IBAD Coated Conductors

Batch Process

$\Delta \phi_{c02} \sim 4$ deg.
Calcination: RTR type furnace
(Operation speed: 5 m/h)

YBCO thickness: 1.5 μm

$I_c > 310$ A/cm-w
(@77K, s.f.)
Progress of Long C.C. (as of 2015.6.8)

Discovery of HTS

J.R. Bednorz & K.A. Muller

Paul Chu

H. Maeda

BSCCO

YBCO

Plenary presentation PL3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.
2. PRESENT STATUS

- Higher In-field I_c by APC Control
- Lower AC Losses & Control of Magnetic Relaxation by Filamentation
Special Requirements for C.C. from Applications

< Requirements >

- High In-field I_c
- High Mechanical Strength
- Low Heat Generation (Low AC Loss etc.)
- Control of Shielding Current
- Low Cost

Motor
Wind Generation
Accelerator
SMES
MRI
NMR
Cable

Plenary presentation PL3 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015.
Improvement of In-field I_c in IBAD-PLD C.C.

- PLD-REBCO
- Epitaxial CeO$_2$
- IBAD –MgO etc.
- Untextured Metal Hastelloy™
Early Stage of APC Introduction

(APS : Artificial Pinning Center)

BaZrO$_3$ nano-rods

GdBCO + BaZrO$_3$ (RTR short sample)

GdBCO (215.6 m, 220A, 1.2 μm3)

YBCO (212.6 m, 245A, 2.25 μm3)

Applied Field Angle, θ (deg.)
Effective APC Materials for IBAD-PLD C.C.

Transport Measurement @77K, 3T

GdBCO+BHO 85 A/cm-w
I_c-B-T in BHO doped IBAD-PLD GdBCO C.C.

Comparison with other BMO

I_c-B-T Mapping Image

Pure

w/ BaHfO$_3$
Features of EuBCO + BHO @ ISTEC

Comparison with other BMO

EuBCO + BHO 141 A/cm-w
GdBCO+BHO 85 A/cm-w

Estimated $I_{c\text{min.}}$ Values of EuBCO + BHO

<table>
<thead>
<tr>
<th></th>
<th>3 T</th>
<th>10 T</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 K</td>
<td>616</td>
<td></td>
</tr>
<tr>
<td>50 K</td>
<td>1400</td>
<td>500</td>
</tr>
<tr>
<td>30 K</td>
<td>2730</td>
<td>1180</td>
</tr>
<tr>
<td>20 K</td>
<td></td>
<td>1630</td>
</tr>
</tbody>
</table>

I_c values were estimated using “Lift Factors(B//c)” of GdBBCO + BHO
Higher $I_c(B)$ in Long C.C.

94m long C.C. with *Thick* EuBCO + BHO film (3.6 μm)

- 77 K & 0.3 T
- STD=2.9%
- V-tap Distance : 48cm

*Estimation from the minimum I_c

I_c min. > 500 A/cm-w (65K, 3 T)
What can be expected in MRI?

Conductor Specification for 3T-MRI
(from conceptual design of Prof. Fukuyama for BSCCO@20K,3T)

\[I_{op} = 185 \text{A} @ 3.6 \text{T} \quad \text{Load}=0.77 \quad S=4.5 \times 0.3 \text{mm}^2 \]

\[\Rightarrow I_c = \frac{185}{0.77} \times \frac{10}{4.5} = 534 \text{ A/cm-w} \]

Estimation of Operating Temperature

141 A/cmw@77K,3T

\[\Rightarrow 527 \text{ A/cm-w} \quad @ 65K,3.6T \]

Estimated using “Lift Factor(B//c)” of GdBCO + BHO

3T-MRI in Liq. N₂
Improvement of In-field I_c in TFA-MOD C.C.
Interim Heat Treatment (IHT) in TFA-MOD for Finer BZO Particles

$I_c - B - \theta$ properties

With interim heat treatment

Without interim heat treatment
Long Tape of IBAD-MOD with APC

Length: \(~124\) m

Superconducting Layer:
YGdBCO+BZO (20mML)

Thickness: 2.5\(\mu\)m

Interim Annealing: Yes

Furnace: Batch Type

77K & 3T

\[I_c @ 77K, \text{s.f.} \]

Long MOD tape with high \(I_c(B)\)!
Lower AC Losses & Control of Magnetic Relaxation by Filamentation

AC Loss Control

+ B

- B

Reduction of LOSS

Shield Current

Control

Main Coil Design Field, B_c

REBCO C.C.

Shielding Current

Shielding Current-induced Magnetic Field B_s

Lowering Shield Current
Filamentation of C.C. for Low AC losses

Scribing technology for forming fine grooves

Masking Laser scribing 2-step chemical etching

Etchant:
Ag: $\text{H}_2\text{O}_2 + \text{NH}_3$
HTS: $(\text{NH}_4)_2[\text{Ce(NO}_3)\text{]_6}$

100m long C.Cs. with 10 filaments in 5mm-width

Hysteresis loss
~ 1/10

PLD
MOD

Hysteresis loss
Position in Length (m)

Unscribed region
Scribed region
Reduction of Hysteresis Loss in Solenoid Coil

\[W = \frac{\alpha}{\gamma} B_m \gamma \frac{W}{n} \]

\[J_c = \alpha B^\gamma \]

\[B_m : \text{Magnetic Flux Amplitude} \]

\[n = 5 \]

AC-loss reduction even in “Coil Shape”
Control of Shielding Current for DC Coils @ ISTEC & Kyushu Univ.

Effect of Filamentation on Magnetic Relaxation

- PLD-GdBCO, without APC @65K, 3T
- Unscribed
- Scribed (500μm)

- Unscribed C.C.
- Scribed (500μm)
- Reduction of Magnetization by filamentation

External Field (Oe)
3. FUTURE PROSPECTS

< Near Future >

• Lowering Cost
• Higher Performances

< Challenging Tasks >

• “ISOTROPIC C.C.”
• “Superconducting Joint” etc.
Lowering Cost

Cost of C.C. (¥/Am)

Production Rate

Process Cost (Equipment & Materials) + Other Cost (Factory, Labor & Indirect)

Critical Current (A) × Yield

Jc & Thickness

Elimination of Serious Defects

For Lower Cost

- Reducing # of Buffer Layer
- Higher Ic @ operating T & B
- Higher Yield (Yield)
- Joint and/or Repair
- Volume of Order et al.
Development of 3rd Generation Wires

“Present R&D for Applications”

▼

Confirmation for

“REALIZATION OF C.C. APPLICATIONS “

Enough for “Absolute Superiority” ? "NO!"

Establishment of

“Advantages to Competitive Technologies”

▼

“Third Generation Tapes“

Ultra-high Specifications beyond Present Forecast
3rd Generation Wires (Japan)

For Establishment of
“Advantages to Competitive Technologies”

- **Ultra-high I_c**
 - e.g. $I_c > 2000A/cm-w$ ($J_c > 10MA/cm^2$)
- **Ultra-high $I_c (B)$**
 - e.g. $> 500A @65K, 5T$
- **Ultra-low AC Loss**
 - e.g. Multi-filamentation
- **Ultra-high Uniformity**
 - e.g. Width & Length, Repeatability $\sigma \leq 0.5\%$
- **Ultra-low Cost**
 - e.g. <1 Yen/Am 1000 Yen/m
What are the future tasks for C.C.?

1) “Round Wire” with “Isotropic I_c-B-θ” for “Complicate Shape of coil”.

→ “Mechanically & Electro - magnetically Isotropic C.C.”

2) Superconducting Joint by “Easy Process”.

REBCO layer
Isotropic Coated Conductors
(Mechanical & Electromagnetic Properties)

Control of Mechanical Properties

Low Aspect Ratio C.C.

- Stabilizer
- Buffer & Super
- Hastelloy

120~200μm

- Higher I_c Uniformity +
- Precise Cutting & Scribing Techniques +
- Protection

Control of Electromagnetic Properties

- Precise Control of APC based on X’tal Growth ↓
- Isotropic Behavior at Temp. & B

Angle of B
Superconducting World!

He needs "Two Legs" to reach "Superconducting World"!

Application

Material (Tape)
End

Thank you for your attention!

Part of this work was supported by the Japan Agency for Medical Research and Development (AMED), the New Energy and Industrial Technology Development Organization (NEDO) and/or Ministry of Economy, Trade and Industry (METI).