
-
Mauricio (Mau) de Lima Lopes
-Mauricio Lopes Remembered
February 8, 2017 (PO53). Mauricio (Mau) de Lima Lopes, a scientist in the Fermilab Technical Division, passed away on January 3, 2017. He was 41 years old.
In January 2005, while completing his Ph.D. research, Mau was hired to work on the ALBA Light Source in Barcelona as a magnet designer. Mau was responsible for the design of room temperature magnets for the storage ring, booster ring, and transfer lines. Mau completed his Ph.D. in December 2005 and continued to work at ALBA through early 2007.
In 2007 Mau came to Fermilab, starting as a postdoc, then later promoted to staff scientist, in the Fermilab Technical Division Magnet Systems Department. Mau spent the next ten years expanding his considerable talents as a magnet designer to superconducting magnet technology. Mau worked on magnet designs for several projects important to the Fermilab and the greater High Energy Physics (HEP) community, such magnets for International Linear Collider interaction region and Muon collider cooling channels. His body of work is documented in numerous publications and conference proceedings.
Arguably, his most important contributions were made to the Fermilab muon to electron (Mu2e) experiment. Starting in 2010, Mau took on the important task of the magnetic design of the Mu2e Transport Solenoid (TS) magnets. As the name implies these solenoid magnets are responsible for the transport of muons from the production target to the stopping target. TS has a unique “S” shape geometry. The magnetic design had to strictly adhere to field requirements in curved and adjoining straight sections. The design had to meet these field requirements under all construction tolerance scenarios. To facilitate these studies, Mau developed his own suite of analysis programs called SolCalc. With its user-friendly interface and graphic interface, these programs allowed him to construct and analyze in a straightforward manner hundreds of magnetic models within the design systematic and random fabrication tolerances. This analysis, in turn, enabled him to identify for the project those tolerances that were key to the TS fabrication.
Mau continued to expand his contributions to the Mu2e project. Along with the TS design, Mau was given responsibility for overseeing the magnetic model for the entire Mu2e experiment. Mau worked closely with the Mu2e collaboration, generating field maps for studying beam transport and background studies, as well as conducting beam transport studies on his own.
In 2013 he became the deputy project manager for the Mu2e TS and a year later became the TS manager. As the TS leader, he was responsible for both the technical design and cost and schedule for this part of the Mu2e project. As such he was the technical interface with between the Mu2e project and the vendor responsible for the fabrication of the TS coils and was pivotal in establishing our ongoing TS fabrication campaign.
In addition to his contribution to the field of magnet technology, Mau often talked about his passion for teaching. Mau taught and co-taught several classes at the United States Particle Accelerator School (USPAS) in the field of magnet technology. In 2014 he received recognition for exemplary performance as a USPAS instructor from both USPAS and Fermilab. Over the years he mentored and supervised many summer students from various Fermilab student programs.
Those who worked with Mau or who were mentored by Mau fondly remember his warm personality, his generosity towards others and his wonderful sense of humor. He will be deeply missed.
Giorgio Ambrosio, Andy Hocker, Jeremiah Holzbauer, Michael Lamm, Vito Lombardo, Ron Ray and Bruce Strauss
Lev Petrovich Gor'kov
-Lev P. Gor'kov, 1929 - 2016
January 20, 2017 (PO51). Lev Petrovich Gor'kov, professor of physics and world-renowned theorist in the field of condensed matter physics, and especially superconductivity, died on December 28, 2016. He was a student of the famous Nobel laureate Lev Landau, and belonged to the group of prominent Russian physicists known as the “Landau school”.
Gor’kov was born in Moscow, then the Soviet Union, on June 14, 1929. In 1947 he started his studies in technical physics, initially at the Moscow State University (MGU) and obtained his diploma (M.Sc.) in 1953 at the Institute of Physical Problems (IFP). Subsequently, he started his doctoral studies while working in the theory department of IFP headed by Landau. In 1956 Gor’kov defended there his PhD1 dissertation and stayed until 1963 when he transferred for a couple of years to Chernogolovka2 as the head of the theory department at the Institute of Chemical Physics. In 1961 he earned the degree of D.Sc., the Soviet/Russian equivalent of European habilitation. In 1965, he moved to the new Institute of Theoretical Physics of the Soviet Academy of Sciences3, of which he was one of the organizers, and headed the Chair “Problems of Theoretical Physics”. He was active there until 1991, the last three years as the Deputy Director when he left Russia and moved to the United States. After a short stay as a visiting professor at the University of Illinois, Urbana-Champaign, he moved to the National High Magnetic Field Laboratory (NHMFL or “MagLab”) at Florida State University, Tallahassee, FL, of which he was one of the founding scientists and the leading theorist (Program Director in Condensed Matter). He remained there until his demise.
Gor’kov’s interest in superconductivity was stimulated by the publication of the BCS theory in 1958. A few months later he developed and published the Gorkov’s equations, a strong theoretical tool, which became the base contemporary theory of superconductivity. He then proceeded in 1959 to develop microscopic foundations of the phenomenological Ginzburg-Landau theory, today known under the acronym GLAG (Ginzburg-Landau-Abrikosov-Gor’kov), which eventually became the most universal approach to study electromagnetic properties of superconductors. In 1958-1960, Gor’kov together with A. Abrikosov developed the theory of superconducting alloys and predicted the possibility of gapless superconductivity. In the early 1970s, Gor’kov, together with G. Eliashberg, established the foundations of the theory of non-stationary and nonequilibrium effects in superconductors, describing their behavior in alternating fields, nonlinearity, and the vortex dynamics. In the late 1970s and 1980s he then consecutively worked on theories of A15 alloys, organic 1D superconductors, and heavy fermions. We don’t mention here his more general and towering contributions to condensed matter physics.
In the US, Gor’kov continued his creative activity in a variety of areas of condensed matter physics and superconductivity. Alone in the period of 1998 to 2016, he authored or co-authored well over 50 papers and four book chapters. His most recent interests in superconductivity included a variety of subjects such as superconductivity at interfaces, superconductivity in sulfur hydrides under high pressures, cuprates, pnictides and others.
Gor'kov had been the recipient of many prestigious awards and honors throughout his illustrious career including the Lenin Prize, Soviet's highest award for scientific achievement in 1966, the Landau Award in 1989, the Bardeen Award in 1991, the Humbolt Research Award in 1998, the Eugene Feenberg Medal for advancing the field of many-body physics in 2004 and in 2015 the Ugo Fano Prize awarded by the Rome International Center for Materials Science. He became a corresponding member of the Soviet Academy of Sciences in 1966, a full member in 1987 and a member of the US National Academy of Sciences in 2005. He achieved Fellow of the American Physical Society (1997) and held honorary doctorates at the City University of New York (1989) and the University of Illinois (1992).
The MagLab Director, Greg Boebinger, wrote in early January 2017: "Lev was a man whose scientific accomplishments are known and admired by the physics community and whose gentle personality and keen sense of humor are equally appreciated by those fortunate enough to have known him personally".
This obituary is based to a large extent on the material published by A. Abrikosov et al. on the occasion of Gor’kov’s 80th birthday, Uspekhy Fiz. Nauk 179, No. 6, 695-696 (2009), and also on Gor’kov’s short obituary now posted at the MagLab website. We thank A. Golubov, Univ. of Twente. M. Feigelman of Landau Institute, Moscow, and V. Mineev of CEA, France, for their help in accessing, especially Russian, sources of information. A comprehensive remembrance of Lev P. Gorkov is in preparation by Russian and other colleagues for possible publication in Physics Today. This obituary replaces the previously posted PO51 temporary text.
1Soviet/Russian degree “Kandidat Nauk“, i.e., Science Candidate.
2Now a Russian “Science City“, less than 45 km northeast from Moscow.
3Now the Landau Institute of Theoretical Physics.Peter Komarek
-Peter Komarek Passed Away
December 16, 2016 (PO49). Peter Komarek, a very well-‐known European leader in the field of applied superconductivity, was born in Vienna, Austria, on November 1st, 1941 and passed away on November 23rd, 2016 at the age of 75.
In 1965 he received engineering diploma from the Technical University of Vienna and one year later he earned a PhD in Technical Physics at the same university. From 1967 until 1973 Peter worked at the Institute for Technical Physics at the Nuclear Research Centre (KFA) in Jülich, Germany and was soon promoted to a division head. In 1973, he joined the Nuclear Research Centre in Karlsruhe (FZK), Germany, as Head of the Division of Cryo-‐energy Technology. His main research topic at the time was the magnetic energy storage.
In 1974, Peter earned his Habilitation (venia legendi, the equivalent of D.Sc.) at the University of Graz, Austria, and in the same year he started his first course on superconducting magnets in energy technology. In 1979, the Austrian Ministry of Science and Research appointed Peter as an honorary professor and in the same year he was promoted to Deputy Director of the FZK Institute of Technical Physics (ITEP), heading the superconductivity division.
Peter’s extraordinary management skills were soon recognized and in 1981 he was appointed to the FZK Scientific and Technical Board. In 1986, Peter Komarek was officially appointed as the Director of the FZK ITEP and he earned another honorary professorship at the Faculty of Electrical Engineering and Information Science at the University Karlsruhe, Germany.
During his work at ITEP, Peter initiated and supported many groundbreaking activities in the field of applied superconductivity for high current applications. Among them were the successful tests in the TOSKA facility of the EURATOM LCT coil, the POLO coil, the ITER and the W7X prototype coils, the development of HTS high current leads for Fusion, the development of high field NMR coils and first SMES (Superconducting Magnetic Energy Storage) demonstrators. Immediately after the discovery of high-temperature superconductivity (HTS), he supported applied materials research in his institute and HTS energy applications such as fault current limiters.
Peter devoted substantial time to serve the research community in fusion and cryogenics. He was also active in IEEE, serving for many years as Head of the Europe Technical Committee, IEEE Council on Superconductivity (IEEE CSC). Furthermore, he served many years as Editor of the journals “Cryogenics” and “Fusion Engineering and Design” and was president of the IEA (International Energy Agency) Agreement on the Assessment of High-‐ temperature Superconductivity. As director of ITEP, he became member of the Board of the European Society of Applied Superconductivity (ESAS), for which he served as President from 2002 – 2006.
For his outstanding achievements in applied superconductivity, Peter received many awards, among them the Heinrich Hertz Prize of the Baden-‐Württemberg Energy Foundation, the Mendelssohn Award of the International Cryogenic Engineering Committee and the Austrian Wilhelm Exner Medal. In 2001, he also became the third awardee worldwide of the IEEE Award for Continuing and Significant Contributions in the Field of Applied Superconductivity, Large Scale Applications
In his private life, Peter devoted time to his loving family, played soccer and tennis in summer, and enjoyed winter skiing in the Austrian Alps. Very sadly, his two children passed away before him. Although gravely ill for several years, Peter never lost his positive attitude and was attempting to follow the progress in his institute and research field. He is survived by his wife Gertrud.
Karlsruhe, Germany, November 2016
Prof. Mathias Noe, Director, Institute of Technical Physics, KIT, Germany
Prof. Bernhard Holzhapfel, Co-Director, Institute of Technical Physics, KIT, Germany, and President of ESAS
Antonio della Corte, President, IEEE Council on Superconductivity
Giovanni Volpini
-In memory of Giovanni Volpini
July 24, 2017 (PO59). Giovanni Volpini passed away prematurely on the 12th of October 2016, after a three months battle with a subtle and rapidly evolving cancer. He was Senior Researcher of INFN (Istituto Nazionale di Fisica Nucleare), leading the superconducting magnet group of INFN - LASA laboratory in Milan (Italy).
Giovanni obtained his “Laurea” in Physics in 1989 at the University of Milan, with a thesis on particle physics in the UA2 experiment. He then turned to applied superconductivity, obtaining the PhD from the University of Milano in 1993 with a work on the “Transition of multifilamentary composite superconductors” studying the meaning of the n-index and other subtle effects. He then investigated properties of the first LHC superconducting cables, designing and commissioning a sample holder for testing LHC cable up to 30 kA in the LASA lab.
In 1998, he moved to detector magnets, working on the superconducting toroid of the ATLAS experiments. He designed various measuring and testing systems for critical current and joint resistance of the aluminum super-stabilized conductor (rated for 60 kA at 5 T) and followed the industrial production of the conductor, in collaboration with CEA-Saclay.
In 2001, he became responsible for the LASA superconducting magnet group, taking over the responsibility for the construction of the 25 m long superconducting coils for the ATLAS Barrel Toroid. He worked in close collaboration with CEA-Saclay and ATLAS magnet team. He also took care of the thermal shield of the barrel toroid magnet as well as of some critical components for the magnet protection, like the dump system. The success of the ATLAS magnets is due also to his much-appreciated competence and hard work.
At the end of LHC construction in 2008, with the colleagues of INFN-Genoa and in collaboration with the GSI team, he contributed to the design, construction, and test of the first prototype of the SIS-300 pulsed dipole for the FAIR project, which was successfully tested in 2013.
From 2013-2016 he was a member of the EuCARD2 collaboration, for which he started to design and build a variable temperature test facility for the magnet prototype.
In 2014, he joined CERN as Associate to the High Luminosity LHC Project, on leave from INFN, while maintaining the position of group leader at LASA laboratory. He designed and successfully tested the first of the super-ferric magnets, a new design that will be used in HiLumi LHC for all high-order corrector magnets. This success gained him the confidence of CERN and resulted in assigning to INFN-LASA the construction of all types of super-ferric magnets for the HiLumi LHC project. He could only draw the first plan to accomplish that project; sudden illness took him away for his loved ones, his friends, and colleagues.
Prof. Lucio Rossi
High Luminosity LHC Project Leader
CERN – Accelerator & Technology SectorLeszek Motowidlo
-Leszek Motowidlo, 1951 - 2016
December 19, 2016 (PO50). Dr. Leszek (Lesh) Motowidlo, 65, of Southington Connecticut, ended his battle with cancer, September 21, 2016, in Connecticut, USA. He was the husband of Diane Motowidlo.
Born on February 5, 1951, in Chambon-Feugerolles, France, he was the son of Gracjan and Jeanine Motowidlo of New Britain. His family immigrated with him to the United States in 1955. Lesh began his journey in applied physics with studies at Central Connecticut State University (CCSU). He then went on to the University of Connecticut and received his M.S. in Physics in 1976 and his Ph.D. in Metallurgy in 1981 under the supervision of Dr. James Galligan. Leszek received the Distinguished Alumni Award from the UCONN School of Engineering in 1996 for his outstanding contributions to both the science and engineering applications of superconducting materials. He gave the DeVivo Lecture in Materials Science 1993 at Northeastern University. He was a member of Sigma Xi Research Society, the New York Academy of Science 2000, and the Academy of Distinguished Engineers 1996.
Lesh contributed over 35 years to research, development, and manufacture in the superconductivity and low-temperature communities. He first joined Varian Associates and served as Visiting Scientist at MIT working with John Williams on superconducting magnet development. He maintained ties to Connecticut throughout his career, starting from work at the University of Connecticut on mechanical properties of lead at liquid helium temperature, and continuing through his association with Intermagnetics General Corporation (IGC), Supercon, and his subsequent venture as founder and CEO of SupraMagnetics. His body of work reflects an understanding of solid state physics, which he applied to produce numerous innovations in practical superconducting wires. His achievements as an innovator and entrepreneur are matched well by his contributions as a scientist.
Working in the late 1980s with Mike Walker and Bruce Zeitlin, Lesh pioneered artificial pinning-center (APC) conductors by co-fabricating niobium and Nb-Ti into homogeneous multi-component nanostructures. The concept of assembling the intended nanostructure by hand at a much larger size provided control over the fraction and arrangement of flux-pinning centers, whereby significantly higher critical current could be achieved than by random precipitates. This work continued through the 1990s and 2000s and expanded to include other metals, including magnetic components such as nickel. An undulator magnet for a Brookhaven National Laboratory light source project was fabricated from one of the final APC conductors. Working with Mark Rudziak and Terence Wong at Supercon, an APC conductor using magnetic nickel-copper alloy pinning centers endures as having the highest measured critical current density of any Nb-Ti wire at the common benchmark of 5 T field and 4.2 K temperature, reaching above 5000 A/mm2. For comparison, conventionally processed strands with α-Ti pinning centers achieved only up to 4000 A/mm2 while those used for magnets for the Large Hadron Collider (LHC) achieved less than 3200 A/mm2.
The advent of high-temperature superconductors motivated Lesh to take on challenges of conductors based on Bi-2212 and Bi-2223. Working in collaboration with Showa of Japan he developed 1st generation HTS wires with state-of-the-art Jc. At IGC, Supercon, and SupraMagnetics, Lesh developed new approaches to powder-in-tube (PIT) technologies, where he developed innovations in milling, re-stacking, wire-drawing and other conductor processing. By the mid-1990s, Lesh and coworkers at IGC and the University of Wisconsin demonstrated Bi-2212 round wires with high current density using a partial melt process. A key insight noted that current density increased with reduction of the powder core diameter. Rutherford cables were manufactured from these conductors in the late 1990s by collaborators at Lawrence Berkeley National Laboratory. Processing improvements also led to long-length Bi-2223 conductors and prototype coils at IGC by 1993.
Through Supramagnetics, Lesh produced a hallmark Nb3Sn product with a novel octagonal geometry. The design allowed the introduction of high-strength components at interstices, making it the only internally reinforced Nb3Sn wire. He also successfully pioneered the use of Cu5Sn4 as a low-cost alternative to NbSn2 powders typically used to make Nb3Sn by the PIT route. The combination of uniform high-quality Cu5Sn4 powders and the PIT design provided as an excellent test bed for exploring alloying additions that could help increase the high-field performance of Nb3Sn for future accelerator magnets beyond the field range of the LHC. In his final program supported by the US Department of Energy, he successfully showed that mixtures of SnO2 and Cu5Sn4 powders could be used to form ZrO2 precipitates in Nb-1Zr alloy tubes, which later resulted in Nb3Sn layers with ultra-fine grain size and improved flux-pinning properties at high fields. In conjunction with successes at the Ohio State University, this final design contributes a scalable route to APC-Nb3Sn, and it should continue to provide an economical test bed for the development of future low-cost high-field Nb3Sn conductors. He was the author or coauthor of over 120 papers and was awarded 10 patents in superconducting materials.
Throughout his career, Lesh was an enthusiastic contributor to the High Energy Physics and Energy Efficiency conductor communities. He stood out for his positive, can-do attitude which inspired others to do their best. He was extremely creative as indicated by his patents and research ideas. His regular presentations at the annual High Field Superconductor Workshops will be greatly missed.
Lance Cooley, David Larbalestier Peter Lee, Hem Kanithi, Bruce Zeitlin
Eric Gregory
-Eric Gregory Passed Away
January 13, 2017. Dr. Eric Gregory, one of the pioneers in the commercial production of Nb-Ti superconducting strands, passed away peacefully on Sunday, August 28, 2016. Dr. Gregory was born in Golborne, England, the son of Henry P. and Ellen (Waterworth) Gregory.
Eric Gregory received his B.A. and Masters degrees in Natural Science, and his Ph.D. in Metallurgy from the University of Cambridge in the UK. His Ph.D. Thesis was on Internal Oxidation of Silver Alloys. He was awarded a Fellowship granted jointly by the UK Ministry of Education and the U.S. Mutual Security Agency to study production technology in the United States where he did post-graduate work at the University of Michigan and at MIT. He worked on sintered aluminum powder products and dispersion hardened copper and nickel based alloys. Dr. Gregory has published over one hundred papers on a variety of topics, principally superconducting materials, and powder metallurgy materials.
In 2002 he was one of the first four recipients of the IEEE Award for Continuing and Significant Contributions to Applied Superconductor Materials Technology for his pioneering work in optimizing the critical current density in niobium-titanium alloys and leadership in the commercialization, by a number of companies, of multifilamentary conductors for high energy physics particle accelerator projects.
He was a partner in Supergenics LLC before retirement and the recipient of a number of Phase II Small Business Innovation Research (SBIR) grants from the US Department of Energy. For 13 years he was Manager of R & D for Intermagnetics General Corporation (IGC) Advanced Superconductors Division (now Mitsubishi and formerly Luvata) and spent most of this time directing work on the development, manufacturing, and testing of internal-tin Nb3Sn. Much of this work was DOE sponsored. His small group has also supplied the majority of the conductor made in North America for the US section of the ITER Central Solenoid Model Coil, Nb3Sn material for KSTAR and the coil to be levitated in the LDX project. Recently, in development work for DOE in the High Energy Physics (HEP) area, the group made strands with critical current in the superconductor fraction (Jcs) of 2550 A/mm2 at 12T in the non-Cu.
Dr. Gregory had 39 years of experience in applied superconductivity research and, before joining IGC, was in charge of all superconducting operations at Supercon, Inc. as Executive Vice President. Under his direction, the strand adopted by the SSC and subsequently the LHC was developed.
Prior to that he was General Manager of Oxford-Airco and established and operated the Carteret, NJ facility of what is now Oxford Superconducting Technology. During this period, the strands now used routinely in MRI and NMR were developed. Also, the Westinghouse coil conductor (the first Nb3Sn Cable in Conduit Conductor (CICC)) was developed.
From 1972 to 1979 he was Director of Corporate Research and Development for Airco at what is now BOC Group, plc. Technical Center in Murray Hill, NJ. From 1959 to 1972 he was Assistant Director and later the Director of the Physical Sciences Section of Airco’s Central Research Laboratory.
From 1956 to 1959 he worked in powder metallurgy of heat treatable cutting tools and burnable poisons for fission reactors at the Sintercast Corporation in Yonkers, NY.
From 1953 to 1956 he worked in the production and development of conventional powder metallurgy parts for the Manganese Bronze & Brass Co. in Ipswich UK.
He was past president of Cambridge University Metallurgy Society, The Metal Science Club of New York, the New York Chapter of the American Society for Metals, and the New York Chapter of The American Institute of Mining, Metallurgical, and Petroleum Engineers.
He leaves his beloved wife of 60 years, Blanche L. (Ring) Gregory of Holden, Massachusetts, and daughter, Pamela Gregory of Campbellsville, Kentucky.
Notes written by Bruce Zeitlin and Bruce Strauss.
Eddie Man-Wai Leung
-Eddie Man-Wai Leung, 1953-2016
Adapted from Leung family obituary
December 13, 2016 (PO48). Engineering physicist Eddie Man-Wai Leung succumbed to cancer on August 1, surrounded by family and friends in San Diego. He was 62 years old. Leung is remembered for an early enthusiasm for education. He majored in both Mechanical and Nuclear Engineering at Queen’s University in Canada, graduating in 1976 with a Bachelor of Science in Engineering Physics.
His first job was at the Fermi National Accelerator Laboratory in Illinois, where he built the world’s second largest superconducting split solenoid (electromagnet) for the Chicago Cyclotron Magnet Conversion Project and received the international Russell B. Scott Cryogenic Engineering Award for outstanding research in cryogenic temperature techniques.
It was during this time that Eddie also received his Master of Engineering Management from the Midwest College of Engineering in Lombard, IL.
Over the next two decades, Leung put his technical and management skills in superconducting magnet applications, maglev, and sensors to use at various corporations in San Diego including General Dynamics, Lockheed Martin, and General Atomics. In 2000, Leung founded Magtec Engineering, where he worked on the design and construction of large superconducting magnets for the Thomas Jefferson National Accelerator Laboratory, the TRUST program (a project on advanced anti-terrorist sensors for the US Department of Homeland Security), and other smaller maglev and consulting projects. Leung also served as a member of the US Senate National Maglev Advisory Committee and California State Assemblyman Tom Connolly’s Transportation Task Force.
Leung is survived by his wife, Irene, his daughter, Alicia, and his brother, Nelson. He is remembered as a devoted husband and father; a fun-loving and inquisitive man with many interests and passions, and as a knowledgeable and gently persuasive member of the cryogenics community.
Published with permission. The original is published in Cold Facts; October 2016, Volume 32, Number 5; 36. (www.cryogenicsociety.org).
Helen T. Edwards
-Helen T. Edwards, 1936-2016
July 16, 2016 (PO47). Helen T. Edwards, a distinguished particle accelerator physicist, was born in Detroit, Michigan, USA, on May 27, 1936, and passed away on June 21, 2016, at the age of 80.
After attending the Madeira prep school in McLean, VA, USA, Helen studied physics at Cornell University, where she earned successively her bachelor’s, M.S. and Ph.D. degrees. After graduating in 1966, she remained for four more years at Cornell, where she was a Research Associate at the 10 GeV Electron Synchrotron, initially working under Robert Wilson. In 1970 she joined him at the Fermi National Laboratory, where he was the first Director. She was immediately appointed Associate Head of the Booster Group and later Head of the Accelerator Division (1987-89).
Edwards was best known for leadership in the design, construction, commissioning, and operation of the Tevatron, which for 25 years was the most powerful particle collider in the world. The Tevatron turned on in 1983 when it began delivering particle beams for Fermilab’s fixed-target experiments. It recorded its first proton-antiproton collisions in 1985 and was used to find the top quark in 1995 and the tau neutrino in 2000, two of the three fundamental particles discovered at Fermilab. Today, Edwards is seen as one of the most vital contributors to the success of Fermilab over its five-decade history. She was also deeply involved in the eventually abandoned project of the Superconducting Super Collider in Dallas, Texas (1989-92). Although retired in 1992, she remained Guest Scientist at Fermilab until 2010. In these years she made significant contributions to the development of high-gradient, superconducting linear accelerators as well as bright and intense electron sources.
The work on the Tevatron earned her the MacArthur Fellowship, also known as the Genius Grant, in 1988, and the National Medal of Technology in 1989. She also received the Department of Energy’s E.O. Lawrence Award and the Robert R. Wilson Prize of the American Physical Society. She was a member of the American Academy of Arts and Science and the National Academy of Engineering. She was also a Fellow of the American Physical Society.
To all who knew her, Edwards was a force of nature. Her colleagues note her forward-thinking vision, her unrelenting determination to get things done and her penchant for coloring outside the lines when it came to solving problems. She was also known for her astonishing intellect, working out complex scientific problems by relying almost entirely on her own knowledge, without having to resort to outside references. The deep understanding of physics and her keen intuition was evident to everyone who knew her.
Edwards had a keen understanding of people and their strengths, with a knack for positioning them in roles where they would excel. She knew how to bring the right people together to carry out a project and how to encourage them to success. In private life, she was a nature lover and is remembered as a very gentle and caring person. Her kind nature extended to her friends and colleagues; she sincerely cared about people.
Compiled by SNF mostly from Fermilab News of June 27, 2016. For the full text of that online publication, see https://news.fnal.gov/2016/06/helen-edwards-visionary-behind-fermilabs-tevatron-dies/
Konrad H. Fischer
-Konrad H. Fischer Remembered
June 1, 2016 (PO46). Konrad H. Fischer, a theoretical physicist in areas of magnetism and superconductivity, passed away on May 3, 2016, in Jülich, Germany, after a long struggle with the Parkinson disease. Konrad was born on October 11th, 1929 in Premnitz, Brandenburg, Germany, and his career was somewhat unusual: he first became a qualified electrician (1950), and then earned a diploma in telecommunications at the Technical University Stuttgart (1955). Eventually, after two years of additional physics studies at Göttingen University, he became a doctoral student at the Technical University (RWTH) Aachen and KFA (now Research Center, FZJ) Jülich.
In only two years he graduated in theoretical physics with an engineering doctorate. The years 1965 to 1967 he was as an Assistant Prof. at the University of Illinois, Urbana Champaign, USA, working on superconductivity problems with John Bardeen. The rest of his career, until retiring in 1994, he spent at KFA/FZJ and RWTH, where he earned his venia legendi (habilitation) in 1970 and became APL Professor in 1976. Some of his Ph.D. students became renowned physicists.
While Konrad’s early and late interest included superconductivity, he has been best known for his work on Kondo effect and spin glasses; on the latter, he co-authored a book [1]. His late interest became vortices in high-Tc superconductors [2]. After retiring, he served the superconductivity community for another 15 years as a reviewer of vortex matter papers for Physical Review and Phys. Rev. Letters.
Along with physics of solid state, classical music was Konrad’s life interest and passion, shared with his wife and transmitted to their five children. Both parents and children have been accomplished musicians, on some occasions even performing in public. By those who knew him well, Konrad will be fondly remembered as an extremely kind and helpful colleague, teacher, and advisor.
Alex Braginski for FZJ-PGI colleagues: I thank Mrs. Gertie Fischer, the wife of the deceased, for providing biographic details and reference samples.
[1] K. H. Fischer and J. A. Hertz, Spin Glasses, Cambridge Univ. Press, 1991.
[2] K. H. Fischer, “Vortices in high-Tc superconductors”, Superconductivity Review 1, 153-206 (1995); K.H. Fischer and T. Nattermann, “Collective flux creep in high-Tc superconductors“, Phys. Rev. B 43, 12032 (1991).Karl Gschneidner
-Karl Gschneidner of Ames Laboratory Passed Away
May 23, 2016 (PO45). Karl A. Gschneidner Jr., known internationally as Mr. Rare Earth, passed away on April 27, 2016, at the age of 85. Gschneidner began work on his Ph.D. at Iowa State University (Ames, Iowa, USA) in 1955 while working as Ames Laboratory graduate researcher in metallurgy. After receiving his doctorate from Iowa State in 1957, he took a job in the Chemistry and Metallurgy Division of Los Alamos National Laboratory in Los Alamos, New Mexico, but returned to Ames in 1963. He formally retired from the Laboratory in January 2016, after a distinguished 60-year career that was dedicated to the study of rare-earth metals.
Among Gschneidner’s important contributions is one of major importance for magnetic refrigeration and cryogenics: the discovery in 1997 of the giant magnetocaloric effect in Gd5(Si2Ge2) [1], which then lead to analogous discoveries in other rare earth compounds and alloys. While dilution refrigerators largely supplanted adiabatic demagnetization at very low temperatures, the method remains of importance, e.g., in space applications.
Gschneidner was a Distinguished Professor of Materials Science and Engineering at Iowa State University, a Senior Metallurgist at the Ames Laboratory, and the Chief Scientist of the Critical Materials Institute. He was elected to the National Academy of Engineering and earned a lengthy list of awards for his research.
A prolific writer, he published more than 544 articles in scientific journals and more than 170 chapters in books and conference proceedings. As a testament to the quality of his research, his published works have been cited an astonishing 19,013 times – an average of 328 citations per year over his career. It was his renown as “Mr. Rare Earth” that led to the establishment of the Critical Materials Institute, a U.S. Department of Energy Innovation Hub located at the Ames Laboratory. Gschneidner testified before a Congressional committee about the need for such a research center and later served as the first chief scientist for CMI.
[1] Pecharsky, V. K.; Gschneidner, Jr., K. A. "Giant Magnetocaloric Effect in Gd5(Si2Ge2)".
Phys. Rev. Lett. 78 (23) 4494. doi:10.1103/PhysRevLett.78.4494This abbreviated text is largely based on the obituary published by the online Ames Laboratory News Center, April 29, 2016.
Colmar Hinnrichs
-April 21, 2016 (PO44). Colmar Hinnrichs unexpectedly passed away on February 27, 2016, after a brief illness, the day after his 50th birthday.
He was born in Hamburg, Germany, in 1966 and graduated from the University of Hamburg in 1997. His diploma thesis was about noise effects in YBCO high-Tc Josephson junctions. In his subsequent PhD dissertation, he designed and fabricated flux-gate magnetometers and readout electronics to understand and optimize both noise performance and bandwidth.
Colmar's passion for electronics and micro controller programming started in school and followed him his whole life. Still, during his PhD study, he co-founded the company Magnicon, in December 2000. Magnicon started with a maintenance contract for a 62-channel MEG SQUID system at the University Hospital Hamburg-Eppendorf. With Colmar's expertise in analog and digital electronics, Magnicon was able to receive in 2002 the first license from PTB for a direct coupled SQUID electronics design. Other co-developments with PTB and in-house electronics developments under Colmar’s aegis followed soon, making Magnicon one of leading manufacturers of SQUID systems and measurement electronics.
Colmar was an excellent researcher and developer who never lost his inborn curiosity. This, and his great sense of humor made working with him a real pleasure. All of us at Magnicon greatly valued his expertise that he patiently tried to pass on to us.
He loved sailing in the North- and Baltic Sea as well as listening to music from Bach to Rammstein hard rock. He was committed to several social issues and lately increased his local political engagement. We have lost a wonderful and open-minded friend and colleague who is and will be missed by many. We share our grief with his wife and two young children.
Henry J. Barthelmess, for Magnicon GmbH
William E. (Bill) Keller
-William E. "Bill" Keller, 1925 - 2015
March 30, 2016 (PO43). William E. “Bill” Keller, a distinguished low-temperature physicist, leader in superconductivity-related activities and a Santa-Fe, New Mexico, USA, and a dedicated philanthropist passed away on December 31st, 2015.
Bill was born in Cleveland, Ohio on March 11, 1925. As a student, he was active in wrestling and soccer, graduated from Harvard in 1945, Magna Cum Laude, Phi Beta Kappa, and subsequently, in 1948, completed there his Ph.D. work in physical chemistry. After a two years stint at the Ohio State University Cryogenic Laboratory, he joined the Los Alamos National Laboratory (LANL) in 1950 as a Staff Member in the Low Temperature Physics and Engineering Group. In 1970, he was appointed that Group’s Leader and in 1985 Assistant “P” Division Leader. He retired from LANL in 1989.
Bill's own important research and writings concentrated on low temperature physics, specifically properties of He3 and He4. These activities are covered in the obituary published in “Cold Facts”, the magazine of the Cryogenic Society of America (CSA), and also in the Brief History of the Condensed Matter and Thermal Physics Group at LANL through 2006, to which we refer our readers.
In the early 1970s, a new national need gained attention in the USA, and Bill’s group responded with energy R&D, a combination of fundamental research and technology development, including applications. The 1973 OPEC oil embargo triggered the widespread realization that US energy sources were being depleted and imported energy was undependable; furthermore, acid rain and other pollution became problematic. Fundamental work under Bill’s direction included research on flux motion, losses, and pinning in Type II superconductors, dielectric breakdown at cryogenic temperatures, properties of A15 superconductors (e.g., Nb3Ge), and the stability of superconductor/normal-metal composites, while applied efforts included the development of dc and ac superconducting power transmission lines, superconducting magnetic energy storage for electric utilities, a car fueled by cryogenic hydrogen, and cryogenic distillation purification of hydrogen isotopes for fusion-energy fuel. Federal support for such energy R&D dropped abruptly in the early 1980s, but many of these developments are receiving renewed attention today.
Near the peak of these activities, Bill was the organizer and chairman of the very successful 1980 Applied Superconductivity Conference (ASC 1980) in Santa Fe, which in retrospect was also a farewell to Bernd Mathias, the renowned experimental researcher into superconducting materials, especially the A15.
After retiring from LANL Bill became an active philanthropist. In 1993 he co-founded the Golden Apple Foundation of New Mexico for Excellence in Teaching. He also joined the Board of Directors of the Santa Fe Community Foundation and served for 15 years holding several offices, mostly financial, within this organization. Most recently, he was a Board Member of the Santa Fe Science Initiative, promoting scientific literacy in the schools of northern New Mexico.
Bill lived his life fully, loved his garden, traveled the world, enjoyed a round of golf, excelled at stock picking, savored good food, and used to finish his day with a shot of good single malt. He had a rich life, gave back plentifully to his community, family, and friends, and is missed by many. Bill is survived by his wife, four children, and two grandchildren.
This obituary is a compilation of the two documents linked above, the Obituary published in the “New Mexican” newspaper of January 10, 2016, and fond memories of Alex Braginski, who had the honor to serve as a consultant in Bill’s group in the late 1970’s and considered him a good friend and mentor. We thank Laurie Huget, Executive Director of CSA, and Greg Swift of LANL, for their kind help and assistance by providing sources.