In Memoriam

In Memoriam image
  • Masaki Suenaga

    Masaki Suenaga

    -

    Masaki Suenaga - Feb. 13, 2009
    Masaki Suenaga of Bellport, a retired award-winning scientist at Brookhaven National Laboratory and an adjunct professor at Stony Brook University, died Feb. 13 at age 71.

    Dr. Suenaga received the IEEE Council on Superconductivity Awards For Contributions in the Field Of Applied Superconductivity during the 2008 Applied Superconductivity Conference, which was held last September in Chicago, IL. After receiving his Award, Dr. Suenaga said, "I feel fortunate that I've been able to do work that I like and that my research has resulted in useful technologies."

    Suenaga's study of the superconductor niobium-tin helped to lay the groundwork for the first high-temperature superconductor power transmission cable system. That system, installed last year by the Long Island Power Authority in Holbrook, allows for the use of far less cable to conduct many times more power than more traditional systems.

    Born in Shimonoseki, Japan, Suenaga moved to the United States after high school, and attended the University of California at Berkeley. There, he earned a bachelor of science degree in electrical engineering in 1962, a master's degree in engineering in 1964, and a doctorate in metallurgy in 1969.
    Yoko Suenaga, his wife, said her husband loved reading, studying and researching everything. "For instance," she said, "before we'd go to Italy or Spain, he'd borrow books and study their history and culture ... He was devoted to research, a never-ending job ... his whole life."
    Suenaga was diagnosed with leukemia about two years ago, and retired from Brookhaven Lab about that time, his wife said, but he maintained office space at the lab, and continued to work three days a week as a guest scientist.

    He first joined Brookhaven Lab in 1969 as an assistant metallurgist, moving up through higher positions over the years until he became senior metallurgist in 1983. He was an adjunct professor of material sciences at Stony Brook, and was honored in November by the lab with the title of Senior Scientist Emeritus.

    Diane Greenberg, a lab spokeswoman said in a statement after his death, "The title is given to BNL retired scientists ... who have made particularly noteworthy contributions to the Laboratory's reputation as a world-class scientific institution."

    In addition to his wife, of Bellport, he is survived by his mother, Aiko Suenaga of Shimonoseki; two sons, Ken of Yokohoma, Japan, and Ben of Manhattan; and two grandsons.

    Suenaga was to be buried in Japan this week.
    A memorial service is tentatively planned for next month on Long Island.
    Source: Newsday, 21 February 2009

  • Hiromi Hirabayashi

    Prof. Hiromi Hirabayashi

    -

    Hiromi Hirabayashi 1934–2008

    Hiromi Hirabayashi, a leading figure and professor emeritus of KEK, passed away on 11 April 2008. He was an internationally renowned pioneer in the field of applied superconductivity and cryogenics for high-energy physics.

    Hirabayashi was born in Gifu Prefecture, renowned for the Shirakawa-go world heritage site. He was educated in nuclear engineering at the graduate school of Tokyo Institute of Technology, where he gained his PhD in 1966, before becoming a research associate at the Institute of Nuclear Study at the University of Tokyo. He worked on preparations for the National Laboratory for High Energy Physics, or KEK, now the High Energy Accelerator Research Organization, in particular in developing a hydrogen bubble chamber, essential for high-energy physics experiments in Japan. At the same time he established cryogenics – the necessary basic engineering – as a new academic discipline in Japan, and contributed to the development of applied superconductivity and cryogenics in collaboration with Japanese industry.

    Moving as an associate professor to KEK when it was set up in 1971, Hirabayashi became a key person in the development of the KEK 1 m bubble chamber. From 1979, as professor, he led the construction of the primary proton and secondary (kaon and pion) beam lines at the KEK 12 GeV proton synchrotron. With excellent foresight, he advocated the importance of applied superconductivity and cryogenic engineering for accelerator science at the energy frontier of particle physics and was able to develop these areas through his strong leadership. His activities in these fields extended internationally through the developments of a superconducting secondary beam line at KEK, superconducting magnets for the TRISTAN project, a challenging 10 T dipole magnet for future accelerators, and collaborations on superconducting magnet development for the Superconducting Super Collider project, the g-2 experiment at Brookhaven, the WASA experiment at Uppsala University and the LHC project at CERN. He made Japanese superconducting magnet technologies for accelerator and particle physics highly appreciated throughout the world.

    Hirabayashi went on to become head of the Experiment Management Division, head of the Cryogenics Center, and director of the Applied Research Laboratory at KEK. In 1995 he was invited to head the Safety and Environment Research Center at the National Institute for Fusion Science, where he used his extensive experience and knowledge to advise on the construction of the Large Helical Device.

    He contributed to several boards and committees, as a member of the international cryogenic engineering committee in 1990–1999, chairman of the cryogenic society of Japan in 1992–1994, and a member and chairperson of the superconductivity and cryogenics panel of the international committee for future accelerators in 1987–1995. He was also the Asian editor of Cryogenics from 1987–1996. His exceptional work in the field was recognized with the IEEE Award for Continuing and Significant Contributions Page 2 of 2 in the Field of Applied Superconductivity and the special award for superconducting technology from the Society of Non-Traditional Technology.

    After retirement in 1998, with a view to the environment and energy saving, Hirabayashi highlighted the need for the "convergence of liquid hydrogen and superconducting technology". His ideas for future society and technology leave an important legacy.

    Hirabayashi’s most important contribution was to devote energy to train the next generation to work in the fields of superconductivity and cryogenics and the development of these technologies. He trained many young scientists who now work actively in accelerator science and particle physics.

    Hirabayashi’s sudden death has been received with deep sadness not only by people in Japan but worldwide.

    Takakazu Shintomi and Akira Yamamoto, KEK.